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Professor, University of Waterloo

Internal-external Member Bissan Ghaddar

Professor, University of Waterloo

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement

of Contributions included in the thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners. I understand that this thesis may

be made electronically available to the public.

iii



Statement of Contributions

• Chapter 3 is based on the manuscript The (not so) Trivial Lifting in Two Dimen-

sions, by Ricardo Fukasawa, Laurent Poirrier and Álinson S. Xavier, which has
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Abstract

Cutting planes are one of the main techniques currently used to solve large-scale Mixed-

Integer Linear Programming (MIP) models. Many important cuts used in practice, such

as Gomory Mixed-Integer (GMI) cuts, are obtained by solving the linear relaxation of

the MIP, extracting a single row of the simplex tableau, then applying integrality argu-

ments to it. A natural extension, which has received renewed attention, is to consider

cuts that can only be generated when considering multiple rows of the simplex tableau

simultaneously. Although the theoretical importance of such multi-row cutting planes

has been proved in a number of works, their effective use in practice remains a challenge.

Since the entire class of multi-row cuts proves challenging to separate, one approach to

obtain them is the following. First, the integral non-basic variables are fixed to zero.

Then, a lattice-free set, which induces an intersection cut, is generated. Finally, the cut

coefficients for the integral non-basic variables are computed by the so-called trivial lift-

ing procedure. In this thesis, we address some computational aspects of this approach,

and we make three novel contributions. In our first contribution, we describe a small

subset of multi-row intersection cuts based on the infinity norm, which works for relax-

ations with arbitrary numbers of rows. We present an algorithm to generate them and

run extensive computational experiments to evaluate their effectiveness. We conclude

that these cuts yield benefits comparable to using the entire class of multi-row cuts, but

at a small fraction of the computational cost. In our second contribution, we describe

a practical method for performing the trivial lifting step on relaxations with two rows.

Unlike previous methods, our method is applicable to intersection cuts derived from any

lattice-free set, and, for maximal lattice-free sets, it is guaranteed to run in constant

time. Computational experiments confirm that the algorithm is at least two orders of

magnitudes faster than current alternatives. In our final contribution, we revisit single-

row relaxations containing a single integral non-basic variable, with the goal of obtaining

inequalities that are not dominated by GMI cuts. The novelty in our approach is that

we use the framework of intersection cuts and trivial lifting, which allows us to obtain a

geometric interpretation of our cuts, a fast algorithm for generating them, and an upper

bound on their split rank. We run computational experiments and conclude that, for a

few instances, they close considerably more gap than GMI cuts alone.
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Chapter 1

Introduction

A mixed-integer linear optimization problem (MIP) is an optimization problem in which

the goal is to minimize a linear objective function subject to linear constraints and to

the condition that some variables must be integral. More precisely, a MIP is a problem

of the form

minimize cTx

subject to Ax = b

x ≥ 0

xi ∈ Z ∀i ∈ I,

where A is a matrix, c and b are column vectors of appropriate dimension, and I is a

subset of variable indices.

Mixed-integer linear optimization started being studied as a field during the 1950s,

and has become widely used in a number of industries since the late 1990s. Exam-

ples of real-world problems where MIPs are particularly useful include vehicle routing,

telecommunications network design, facility location, personnel scheduling, among many

others. Various important problems in engineering, medicine and biology have also been

successfully modelled as MIPs [13].

One of the earliest practical methods for solving MIPs to optimality, known as branch-

and-bound, was first described by Land and Doig [59], and is still widely used today. The

idea is to solve a linear relaxation of the MIP, and, if the solution obtained is fractional,

to recursively partition the problem. Early commercial solvers based on this method

proved that, despite common belief at the time, enumeration techniques could, in fact,

be used to solve real-world MIPs to optimality [25]. Since then, other techniques have

been used in conjunction with branch-and-bound in order to improve its performance,

and have dramatically improved our ability to solve large-scale problems. One such
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technique, which has become one of the main ingredients of modern solvers, are cutting

planes.

Cutting plane methods work by finding inequalities that make the linear relaxation

of the MIP increasingly stronger. They have been used successfully to solve a number

of combinatorial problems, including the travelling salesman problem [7], the linear

ordering problem [50], maximum cut problems [18] and packing problems [51], to name

but a few. Cutting planes have also been successfully integrated in most commercial

MIP solvers, where they have made significant impact [26]. When the combinatorial

problem that the MIP represents is known in advance, cutting planes can be generated

by a careful study of the structure of the problem and the geometry of its feasible region.

Since the users of commercial solvers do not always have the expert knowledge to derive

cutting planes for their particular problems, however, there has also been interest in

cutting planes that can be applied to any MIP, regardless of what problem is being

modelled. Such cuts are known as general-purpose cutting planes.

The first general-purpose cutting planes were proposed by Gomory in the late 1950s

[45] and were derived first by solving the linear relaxation of the MIP, extracting a

single row of the optimal simplex tableau, and then applying integrality arguments to

it. Although, for nearly three decades, they were deemed too numerically unstable and

too dense to be usable in practice, computational experiments performed in the 1990s

proved that Gomory cuts could, in fact, work very well [14]. Since then, many alternative

methods for deriving general-purpose cutting planes from a single row of the simplex

tableau have been proposed. Examples include two-step MIR cuts [33], k-cuts [31],

interpolated subadditive cuts [43] and knapsack cuts [44].

Despite considerable research effort, the practical impact of these alternative single-

row cuts has been somewhat disappointing, as none of the proposed cutting planes could

significantly outperform Gomory cuts in practical settings. This led researchers to focus

their attention on other classes of general-purpose cutting planes, and, particularly, on

cuts that could only be derived by considering multiple rows of the simplex tableau

simultaneously.

The theoretical basis for the computation of multi-row cutting planes started being

developed in the late 1960s and early 1970s by Gomory and Johnson [46, 47, 48, 56],

when they studied the so-called corner polyhedron. Given a vector f ∈ Qn and some
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vectors r1, . . . , rm ∈ Qm, the corner polyhedron is the set of vectors x, s satisfying:

x = f +
m∑
j=1

rjsj +

p∑
j=1

wjzj

x ∈ Zn

s ∈ Rm
+

z ∈ Zp+.

(M)

In this model, the decision variables x, s and z correspond, respectively, to the basic

variables, the continuous non-basic variables and integral non-basic variables, while f

and r1, . . . , rm, w1, . . . , wp correspond to the right-hand side and to the columns of the

tableau. An important insight, made early on by Balas [12], was that valid inequalities

for the corner polyhedron can be obtained from certain lattice-free sets — convex sets

that do not contain any integer point in their interior — therefore reducing the problem

of generating cutting planes to the geometric problem of finding convex sets that give

rise to effective cuts. Valid inequalities for (M) obtained using this paradigm are known

as multi-row intersection cuts.

After some initial interest in the 1970s, the study of multi-row intersection cuts did

not receive much attention until the late 2000s, when Andersen, Louveaux, Weismantel

and Wolsey [5] studied a considerably simpler version of the corner polyhedron with

exactly two rows, in which the integral non-basic variables are fixed to zero. More

precisely, they studied the model

x = f +
m∑
j=1

rjsj

x ∈ Zn

s ∈ Rm
+ ,

(C)

for the specific case of n = 2. This model preserves much of the complexity of the corner

polyhedron, but is considerably simpler to analyze. They showed that all inequalities

that induce facets for the convex hull of (C) are intersection cuts derived from certain

two-dimensional splits, triangles or quadrilaterals. This elegant result sparked a renewed

interest in multi-row cutting planes. Since then, researchers have studied many variations

of this relaxation [27, 32, 71, 3, 39, 40], have generalized some results for relaxations with

more than two rows [27, 11], and have obtained theoretical guarantees on how strong

can multi-row cuts be [6, 19, 61, 10].
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The theoretical importance of multi-row intersection cuts has been proved in a num-

ber of works. Cook, Kannan and Schrijver [30] presented a simple MIP with three vari-

ables for which adding single-row split cuts iteratively fails to solve the problem, even

after an infinite number of iterations. Andersen et al. [5], on the other hand, observed

that the cutting plane needed to immediately solve that problem could be generated

by considering two rows of the tableau simultaneously. Basu, Bonami, Cornuéjols and

Margot [19] showed more examples of sets where cuts generated from two rows provide a

good approximation of the integer hull, while the approximation obtained by single-row

split cuts is arbitrarily bad.

On a more practical side, there has also been interest in studying the impact of using

valid inequalities for the corner polyhedron as cutting planes during the solution of MIPs

arising from real-world applications. Louveaux, Poirrier and Salvagnin [61] developed

an exact separator for the entire class of intersection cuts that can be generated from

(M), and tested it on instances from the MIPLIB. While the results were encouraging,

in the sense that these intersection cuts were able to close significantly more integrality

gap than single-row cuts, their exact separator was fairly slow, and therefore could not

be used to solve MIPs faster. Their work also highlighted how difficult it is to separate

over (M).

Other researchers [42, 64, 34, 35, 19] took a more practical approach to generate

valid inequalities for the corner polyhedron, which we describe next. Starting from

relaxation (M), the integral non-basic variables z are fixed to zero, and the much simpler

model (C) is obtained. Then, a lattice-free set is generated in Rn and the corresponding

intersection cut is computed. Finally, the cut coefficients for the integral non-basic

variables, which had been fixed to zero, are computed by the so-called trivial lifting

procedure, and a valid inequality for (M) is obtained.

In this thesis, our goal is to study computational aspects of this approach that would

be necessary for the effective use of multi-row cutting planes in practice. Our research

into this topic started by using the framework of multi-row intersection cuts to generate

strong cuts for single-row relaxations. From early experiments it became clear that, in

order for these cuts to be useful in practice, two challenges would need to be addressed:

the issue of cut selection, and the issue of efficiently performing the lifting step. In this

thesis, make three main novel contributions, which we summarize next.

Our first contribution is related to the selection of the lattice-free sets that will be

used to generate valid inequalities for (C). Even when restricted to sets that induce

facets of the convex hull of (C), the number of suitable maximal lattice-free sets is still

very large, specially for instances of large size. An important problem, then, is to select
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a small subset of valid inequalities for (C) that can be generated efficiently and that

makes a significant impact when used as cutting planes for solving MIPs. In Chapter 4,

we introduce a subset of inequalities based on the infinity norm. This subset is very

small, works for relaxations having an arbitrary number of rows, and, unlike many

subclasses studied in the literature, it takes into account the columns of the simplex

tableau. We describe an algorithm for generating these inequalities and run extensive

computational experiments in order to evaluate their effectiveness when used as cutting

planes for solving real-world MIPs. We conclude that this subset of inequalities yields,

in terms of gap closure, around 50% of the benefits of using all valid inequalities for (C)

simultaneously, but at a small fraction of the computational cost, and with a very small

number of cuts.

In our second contribution, we focus on the lifting step. Since inequalities that are

valid for (C) do not take into account the integral non-basic variables, their performance

deteriorates for instances where these integer variables play an important role [35]. Fol-

lowing Dey and Wolsey [40], given an inequality that is valid for (C), the usual approach

to strengthen it has been to calculate the coefficients for the integral non-basic variables

by using the so-called trivial lifting function. Despite its name, evaluating this func-

tion efficiently is far from trivial. The methods proposed in the literature either have

high computational overhead, or are only applicable to intersection cuts coming from

lattice-free sets that have very particular structure. In Chapter 3, we develop a more

practical method for performing trivial lifting on relaxations with two rows. Unlike the

previous alternatives, our method is applicable to intersection cuts derived from any

lattice-free set, and it is guaranteed to run in constant time if the sets are maximal. We

perform computational experiments, and find that our method is at least two orders of

magnitude faster than alternatives.

In our final contribution, we note that, although the framework of multi-row inter-

section cuts has been traditionally used to study relaxations with two or more rows,

it can also be used to generate strong valid inequalities for single-row relaxations. In

Chapter 5, we revisit the single-row relaxation, with the goal of generating additional in-

equalities that are not dominated by Gomory cuts. Although single-row cuts have been

extensively studied before, the novelty in our approach is that we use the framework of

multi-row intersection cuts to derive our cuts, which allows us to get a geometric inter-

pretation of the inequalities obtained. Starting from a single-row relaxation having one

integral non-basic variable, we rewrite it as (C). We then obtain a precise description

of the lattice-free sets that induce facets of this set, and we develop a fast algorithm for

enumerating them. The algorithm also allows us to obtain an upper bound on the split

5



closure of (C). Finally, we run computational experiments on the MIPLIB to evaluate

the impact of these cuts in practice, and the speed of our cut generator. We conclude

that, for a few instances, our single-row cuts close significantly more gap than Gomory

cuts alone.
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Chapter 2

Background

In this chapter, we present definitions and basic results related to corner relaxations

of the simplex tableau, lattice-free sets and lifting that will be used throughout this

thesis. We start by introducing, in Section 2.1, the continuous multi-row relaxation of

the simplex tableau. In Section 2.2, we introduce lattice-free sets and describe how

can they be used to generate valid inequalities for the continuous multi-row relaxation.

In Section 2.3, we introduce a stronger relaxation of the simplex tableau, known as

the corner polyhedron, and we show how valid inequalities for the continuous multi-row

relaxation can be transformed into strong inequalities for the corner polyhedron by a

procedure known as trivial lifting. For a more detailed survey, see Conforti, Cornuéjols

and Zambelli [29, Chapter 6].

2.1 Continuous multi-row relaxations

Consider a mixed-integer linear problem (MIP) given by

minimize cTx

subject to Ax = b

x ≥ 0

xi ∈ Z ∀i ∈ I.

(MIP)

Here, and throughout this thesis, we assume that all the data is rational. Although MIPs

with irrational data can also be defined, many results on mixed-integer optimization and

cutting plane theory assume rationality. Let B be a subset of variable indices, and denote

by AB the submatrix obtained from A by keeping only the columns indexed by B. We

recall that B is a feasible basis for the linear relaxation of (MIP) if AB is an invertible

matrix, and if A−1
B b is a vector with no negative components. Suppose that B is a
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feasible basis, and let N be indices of the remaining variables. The variables xi, for

i ∈ B, are known as the basic variables, while the variables xi, for i ∈ N , are known as

the non-basic variables. Multiplying both sides of the system Ax = b by A−1
B , it is not

hard to see that Ax = b can be rewritten as

xi = b̄i +
∑
j∈N

āijxj ∀i ∈ B, (TBL)

where b̄i ≥ 0. The system (TBL) is also known as the simplex tableau associated with

B, and each of its equalities is commonly referred as a row of the simplex tableau. The

basic feasible solution x∗ associated with this tableau is given by setting x∗i = b̄i, for

every i ∈ B, and x∗i = 0, for every i ∈ N . Note that, while x∗ is feasible for the linear

relaxation of (MIP), it may not be feasible for the original problem, since there may

some fractional b̄i, where i ∈ I. In this case, our goal is to find valid inequalities for

(MIP) that cut off x∗. Next, we describe one approach, which focuses on a specific

relaxation of (TBL).

Starting from the constraints of (MIP), we discard the non-negativity constraints

of all the basic variables, in addition to the integrality constraints of all the non-basic

variables, to obtain

xi = b̄i +
∑
j∈N

āijxj ∀i ∈ B,

xi ≥ 0 ∀i ∈ N,

xi ∈ Z ∀i ∈ B ∩ I.

(2.1)

This system can be simplified even further by the observation that the variables xi, for

i ∈ B \ I, can assume any real value, and that this value is completely determined by

the values of the remaining variables. Indeed, if we have a solution for the following

system, which was obtained from (2.1) by dropping the variables xi, for i ∈ B \ I, along

with all the equations where these variables appear, then obtaining a solution for (2.1)

is trivial:

xi = b̄i +
∑
j∈N

āijxj ∀i ∈ B ∩ I

xi ≥ 0 ∀i ∈ N

xi ∈ Z ∀i ∈ B ∩ I.

(2.2)

Now we rewrite (2.2) in a more clean way. We may assume, without loss of generality,
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that B ∩ I = {1, . . . , n} and that N = {1, . . . ,m}. To simplify our notation, let f =

(b̄1, . . . , b̄n), and let rj = (ā1j, . . . , ānj), for j = 1, . . . ,m. System (2.2) can be rewritten

as

x = f +
m∑
j=1

rjsj

x ∈ Zn

s ∈ Rm
+ .

(C)

Relaxation (C) is known as the finite continuous multi-row relaxation of the simplex

tableau, and it is one of the main models studied throughout this thesis. As shown in

the derivation above, the x and s variables correspond, respectively, to the basic and

non-basic variables, while f and r1, . . . , rm correspond, respectively, to the right-hand

side and to the columns of the tableau. The basic feasible solution associated with the

tableau corresponds to the point (x∗, s∗) = (f, 0). Note that, if some component of f is

fractional, then (x∗, s∗) is not a feasible solution to (C). This relaxation, therefore, can

be used to generate valid inequalities that cut off the fractional basic feasible solution.

The finite continuous multi-row relaxation is a simplified version of the Corner Poly-

hedron, introduced by Gomory [46] in the late 1960s, and was studied by Andersen,

Louveaux, Weismantel and Wolsey [5] and subsequently Cornuéjols and Margot [32] for

the two-row case (n = 2).

Another relaxation, closely related to (C), is the infinite continuous multi-row re-

laxation. Here, we have a finite number of basic variables but an infinite number of

non-basic variables. More precisely, the relaxation is given by

x = f +
∑
r∈Qn

rsr

x ∈ Zn

sr ∈ R+ ∀r ∈ Qn

s has finite support.

(C∞)

In this relaxation, s is an infinite dimensional vector, and the condition that s has finite

support means that only a finite number of its components are allowed to be non-zero.

Note that (C) can be obtained from (C∞) by fixing all, but a finite number of sr variables

to zero. One advantage of the infinite relaxation, when compared to the finite relaxation,

is that it only depends on the vector f ∈ Qn, and not on the particular values of rj,

and therefore can be more easily studied. Valid inequalities for the infinite multi-row
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relaxation are usually described in terms of the so-called valid functions. A function

ψ : Qn → R is valid for (C∞) if the inequality∑
r∈Qn

ψ(r)sr ≥ 1 (2.3)

is satisfied by every vector (x, s) that satisfies (C∞). Thus, valid functions provide

coefficients of valid inequalities for (C∞). A valid function ψ is minimal if there is no

valid function ψ′ distinct from ψ such that such that ψ′ ≤ ψ. Since the variables sr are

non-negative, minimal functions lead to stronger valid inequalities than non-minimal

ones. Borozan and Cornuéjols [27] studied the properties of minimal valid functions. As

we will see in the next section, they can be obtained in a geometric way.

2.2 Lattice-free sets and intersection cuts

In this section, we introduce the concepts of lattice-free sets and gauge function, and

we show how they can be used to generate minimal valid functions for the continuous

multi-row relaxation.

A convex set is called lattice-free if it does not contain any integral points in its

interior, and maximal lattice-free if it is not properly contained into any other lattice-

free set. This concept was introduced by Lovász [62]. In two dimensions, full-dimensional

maximal lattice-free sets are well understood, and, following Dey and Wolsey [37], they

have been classified as follows.

Proposition 1 ([37, 35]). Every full-dimensional latice-free set in R2 is either:

(i) A split set {(x1, x2) : b ≤ a1x1 + a2x2 ≤ b + 1}, where a1 and a2 are co-prime

integers and b is an integer;

(ii) A type-1 triangle — a triangle with integral vertices and exactly one integral point

in the relative interior of each edge;

(iii) A type-2 triangle — a triangle with at least one fractional vertex v, exactly one

integral point in the relative interior of the two edges incident to v, and at least

two integral points on the third edge;

(iv) A type-3 triangle — a triangle with exactly three integral points on the boundary,

one in the relative interior of each edge; or

(v) A quadrilateral containing exactly one integral point in the relative interior of each

of its edges.

10



Figure 2.1: Full-dimensional maximal lattice-free sets in R2.

Figure 2.1 illustrates the maximal lattice-free sets in R2. In higher dimensions,

it is known that maximal lattice-free sets in Rn are polyhedra with at most 2n facets

[41, 24, 68]. A more precise classification of these sets, however, is still an active research

topic [11].

Given a closed convex set K ⊆ Rn containing the origin in its interior, the gauge

function ψK : Qn → R of K is defined as

ψK(r) = inf
{
t > 0 :

r

t
∈ K

}
.

Since the origin belongs to the interior of K, the function ψK is finite everywhere.

Furthermore, ψK(r) ≤ 1 if and only if r ∈ K. When r belongs to the recession cone of

K, that is, when r
t
∈ K, for every t > 0, we have ψK(r) = 0. It is not hard to prove that

ψK is convex, sublinear and positively homogeneous. When K is a rational polyhedron,

we can write

K =
{
x ∈ Rn : aix ≤ 1, i = 1, . . . , k

}
,

where k is the number of facets of K and a1, . . . , ak ∈ Qn are row vectors. The gauge

function of K, in this case, is given by the simple formula

ψK(r) = max
i=1,...,k

air.

Since, in this thesis, we only deal with polyhedral lattice-free sets, this is the formula

that we will commonly use to compute the gauge function.

Our interest in lattice-free sets and the gauge function comes from the fact that they

can be used to generate minimal valid functions for the infinite continuous multi-row

relaxation. Indeed, Borozan and Cornuéjols [27] proved that, if B is a full-dimensional

lattice free set containing f in its interior, then the gauge function of B − f is a valid

11



f

Figure 2.2: Example of intersection cut

function, and therefore ∑
r∈Qn

ψB−f (r)sr ≥ 1 (2.4)

is a valid inequality for (C∞). Conversely, they also prove that, if f ∈ Qn \ Zn and ψ :

Qn → R is a minimal valid function, then the closure of the set {x ∈ Qn : ψ(x− f) ≤ 1}
is a full-dimensional maximal lattice-free set containing f .

Using the results above, we can use the following approach to generate valid inequali-

ties for the finite continuous multi-row relaxation that cuts off the fractional point (f, 0).

First, we consider the infinite relaxation (C∞) of (C). Then, we construct a lattice-free

set containing f in its interior, preferably maximal, and since (2.4) is a valid inequality

for (C∞), then
m∑
i=1

ψB−f (r
i)si ≥ 1 (2.5)

must be valid for (C). The approach of computing cuttings planes through lattice-free

sets was first introduced by Balas [12], and cuts obtained in such way are usually called

intersection cuts. Below we show a concrete example of this approach.

Example 2. Consider the following continuous two-row relaxation of the simplex tableau.

x =

(
1
2
1
2

)
+

(
1

1

)
s1 +

(
0

−1
2

)
s2 +

(
−1

6
1
2

)
s3

x ∈ Z2

s ∈ R3
+.

(2.6)

We want to obtain a valid inequality for (2.6) that cuts off the fractional point (x, s) =(
1
2
, 1

2
, 0, 0, 0

)
. Using the intersection cut approach, we can construct a lattice-free set

B ⊆ R2 that contains the point f =
(

1
2
, 1

2

)
in its interior, such as the type-1 triangle

12



shown in Figure 2.2. In this case,

B =

x ∈ R2 :

x1 ≥ 0

x2 ≥ 0

x1 + x2 ≤ 2

 .

In order to obtain the gauge function of B − f , we rewrite the constraints that define B

in the form aT (x− f) ≤ 1:

B =

x ∈ R2 :

 -2 0

0 -2

1 1

(x1 − 1
2

x2 − 1
2

)
≤ 1

 .

The gauge function of B − f is given by ψB−f (r) = max {−2r1,−2r2, r1 + r2}, which

implies

ψB−f

(
1

1

)
= 2 ψB−f

(
0

−1
2

)
= 1 ψB−f

(
−1

6
1
2

)
=

1

3
.

We conclude that the following inequality is valid for (2.6):

2s1 + s2 +
1

3
s3 ≥ 1. �

2.3 Mixed-integer multi-row relaxations

Throughout this thesis, we also consider a stronger relaxation of the simplex tableau,

where the integrality of some non-basic variables is preserved. More precisely, given

f ∈ Qn \ Zn, r1, . . . , rm ∈ Qn \ {0} and w1, . . . , wp ∈ Qn \ {0}, we consider the finite

mixed-integer multi-row relaxation, given by

x = f +
m∑
j=1

rjsj +

p∑
j=1

wjzj

x ∈ Zn

s ∈ Rm
+

z ∈ Zp+.

(M)

13



Introduced in the late 1960s by Gomory [46], this relaxation is also known as the cor-

ner polyhedron1. It is considerably stronger than the continuous relaxations, since the

integrality of the non-basic variables has been preserved, but also considerably more

complex to study.

Similarly to previous sections, an infinite version of this relaxation can also be defined,

where we have an infinite number of non-basic variables. Given f ∈ Qn, the infinite

mixed-integer multi-row relaxation is given by

x = f +
∑
r∈Qn

rsr +
∑
w∈Qn

wzw

x ∈ Zn

sr ∈ R+ ∀r ∈ Qn

zw ∈ Z+ ∀w ∈ Qn

s, z have finite support.

(M∞)

This relaxation was first studied by Johnson [56]. As before, a great advantage of

relaxation (M∞), in comparison to (M), is that it only depends on f . Furthermore, (M)

can be obtained from (M∞) by setting all but a finite number of s and z variables to

zero, therefore inequalities that are valid for (M∞) are also valid for (M).

One strategy for obtaining valid inequalities for (M∞) is through lifting. This tech-

nique was first introduced by Padberg [66] for a specific combinatorial problem and later

generalized to other polyhedra [69, 72, 17]. In this approach, we start from an inequality∑
r∈Qn

ψ(r)sr ≥ 1, (2.7)

where ψ is a minimal valid function for (C∞), and we need to find a function π : Qn → R
such that ∑

r∈Qn

ψ(r)sr +
∑
r∈Qn

π(r)zr ≥ 1 (2.8)

is satisfied by every (x, s, z) in (M∞). Such a function π is a lifting of ψ, and the pair

(ψ, π) is known as a cut-generating pair. A lifting π is minimal if there does not exist

any distinct lifting π′ such that π′ ≤ π. As before, we are mainly interested in minimal

liftings of ψ, since these functions lead to valid inequalities with the strongest possible

1In the literature, the term corner polyhedron has been used to denote different variations of (M).
In particular, it has been used to denote both relaxations where all non-basic variables are integer, as
well as relaxations where some non-basic variables are allowed to be continuous. For this reason, we
prefer the less ambiguous term mixed-integer multi-row relaxation.
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coefficients. Many authors have studied properties of minimal liftings [56, 9, 20, 22, 28,

39, 40]. We note that minimal liftings are not necesseraly unique. That is, there may

exist multiple functions π such that π is a minimal lifting of ψ. Enumerating all such

functions remains a computational challenge.

A practical method for obtaining a lifting of ψ (not necesseraly minimal) was pro-

posed by Gomory and Johnson [47] and Balas and Jeroslow [15]. They proved that, if

π is defined as

π(w) = inf
k∈Zn

ψ(w + k), (2.9)

then π is a lifting of ψ. This function is called the trivial lifting of ψ. It has been proved

that, in some cases, the trivial lifting is a minimal lifting. In other words, in those

cases, the computationally cheaper trivial lifting actually yields the best possible cut

coefficients. Moreover, even when this is not the case, one important advantage of the

trivial lifting is that it is sequence independent, which means that the order in which the

coefficients are computed is irrelevant. The idea of potentially losing coefficient strength

in order to obtain a more computationally tractable sequence-independent lifting has

been applied to other valid inequalities for MIPs, like flow cover inequalities [52]. In

Chapter 3, we explore the computational aspects of evaluating the trivial lifting function.
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Chapter 3

Efficient Trivial Lifting in Two
Dimensions

In Section 2.3, we discussed how valid inequalities for the mixed-integer multi-row re-

laxation can, theoretically, be obtained by modifying inequalities that are valid for the

continuous relaxation, via trivial lifting. In this chapter, we focus on the computational

aspects of this procedure, and we propose a practical algorithm for performing trivial

lifting on relaxations with two rows.

Consider the mixed-integer multi-row relaxation of the simplex tableau, given by

x = f +
m∑
j=1

rjsj +

p∑
j=1

wjzj

x ∈ Zn

s ∈ Rm
+

z ∈ Zp+

(M)

where f ∈ Qn \ Zn and r1, . . . , rm, w1, . . . , wp ∈ Qn \ {0}. As discussed in Section 2.3,

one strategy to obtain a strong valid inequality for (M) is to start from valid inequalities

for the continuous multi-row relaxation and strengthen them via trivial lifting. More

specifically, we perform the following steps. First, all the zj variables in (M) are fixed

to zero, and we obtain

x = f +
m∑
j=1

rjsj

x ∈ Zn

s ∈ Rm
+

(C)

which is a continuous multi-row relaxation of the simplex tableau. As discussed in
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Section 2.2, strong valid inequalities for (C) can be easily generated from lattice-free

sets. The second step, then, is to find a lattice-free set B ⊆ Rn containing f in its

interior. If ψ is the gauge function of B − f , then

m∑
j=1

ψ(rj)sj ≥ 1 (3.1)

is a valid inequality for (C). Note that (3.1) is not necessarily valid for (M), since all

the integral non-basic variables z received coefficient zero. An important final step is to

modify (3.1), by finding a function π : Qn → Q such that

m∑
j=1

ψ(rj)sj +

p∑
j=1

π(wj)zj ≥ 1 (3.2)

is a valid inequality for (M). As discussed in Section 2.3, one possible choice of π is the

so-called trivial lifting of ψ, defined as

π(w) = inf
k∈Zn

ψ(w + k). (3.3)

Despite its name, evaluating the trivial lifting function π efficiently is far from trivial.

This is particularly true if put into the context of where the problem arises. It is

solved once for every integer variable that needs to be lifted within a cut, so potentially

thousands of times per cut. In addition, if one thinks that several cuts are to be generated

and that the cutting-plane generation is just one small step in the whole solution process

of a MIP, this can quickly become an impractical problem to solve. Next, we discuss

some approaches that have been proposed in the literature.

A naive approach to solve (3.3) is to evaluate ψ(w + k) for every k ∈ Zn such that

‖k‖ is smaller than a fixed constant, chosen before the cut generation procedure starts.

For the two-row case, Dey and Wolsey [40] proved that, if the constant is large enough,

then this procedure finds the correct answer. The number of points k that must be

considered, however, is not bounded by any constant and can be potentially very large.

Instead of evaluating ψ at many points, Espinoza [42] evaluates this function exactly

once, at a point selected heuristically, with no guarantee that the exact trivial lifting

coefficient is obtained. More specifically, for each ray w ∈ Qp, he evaluates ψ(w+ k) for

k = −(bw1c , . . . , bwpc).

The motivation for the choice of k comes from the fact that ψ, being a gauge function,
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tends to assign smaller values to shorter vectors. In later computational experiments,

Musalem [64] used the same strategy. While computationally friendly, this approach

is not guaranteed to find the correct answer, and produces inequalities that are not as

strong as they could be.

Basu, Bonami, Cornuéjols and Margot [19] focused on the specific case where the

lattice-free set B is either a type-1 or type-2 triangle, and derived a closed formula for

evaluating the trivial lifting function π. The idea is that, for these lattice-free sets, the

infimum on (3.3) must be attained in one of six candidate choices of k. The formula

evaluates ψ at these six points and takes the minimum. This result was also used by

Dey, Lodi, Tramontani and Wolsey [34, 35] in later computational experiments. The

drawback with this approach, however, is that it greatly limits the range of lattice-free

sets that can be experimented with.

Finally, it is worth mentioning that, in principle, this problem can be solved in

polynomial time for fixed n, since it is a minimization of a convex function over integer

points in polyhedra [65], or modeled as a mixed-integer program by adding a continuous

variable to handle the convex piecewise linear objective function which leads to another

polynomial time algorithm for fixed n [9]. Such approaches, however, rely on the solution

of the feasibility problem in fixed dimension as a subroutine to solve the optimization

problem. Solving one such MIP for each cut coefficient would likely suffer from significant

computational overhead, even if a fast fixed-dimension MIP solver implementation were

available.

In this chapter, we develop a more practical method for evaluating the trivial lifting

function in two dimensions, which requires significantly fewer queries to the function ψ

than the naive procedure and that does not have significant computational overhead.

For maximal lattice-free sets, we prove that the algorithm is guaranteed to terminate in

constant time, and for the cases where the closed formula described in [19] is applicable,

we show that it requires the same number of evaluations to the function ψ as the closed

formula. We also obtain an upper bound on the number of evaluations for non-maximal

lattice-free sets, which depends on the lattice-width of the set and on its second covering

minimum. Finally, we run computational experiments to confirm that the algorithm

works well in practice. The proposed method can also easily be adapted to solve the

lifting problem in higher dimensions, though in that context we do not have theoretical

or computational evaluations of its performance.
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3.1 Main algorithm

In this section, we describe an alternative algorithm for the computation of trivial lifting

coefficients on two-dimensional lattice-free sets. More specifically, letB ⊆ R2 be a convex

lattice-free set containing f ∈ Q2\Z2 in its interior, and suppose ψ : Q2 → R is the gauge

function of B− f . For any w ∈ Q2, our goal is to solve the minimization problem (3.3).

The following propositions give us the two main ideas behind the algorithm. The

first proposition shows that, if one component of k is fixed at any value (without loss of

generality, we fix k2), then the minimization problem becomes significantly easier.

Proposition 3. Let k̄2 ∈ R and w ∈ Q2. If k∗1 is a solution for

min
k1∈R

ψ
(
w1+k1
w2+k̄2

)
(3.4)

then a solution for

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
(3.5)

is either bk∗1c or dk∗1e.

Proof. This follows directly from the fact that ψ is a univariate convex function. �

Therefore, given a solution for the continuous problem (3.4), we can easily determine

an optimal solution for the integer problem (3.5). Note that (3.4) can be solved efficiently,

for example, by modeling it as an LP. Since these ideas will be used throughout, it will

be convenient to define the following notation

g(ᾱ2) := min
α1∈R

ψ ( α1
ᾱ2 )

h(k̄2) := min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
.

The second proposition shows that, if the second component of k is fixed at a num-

ber with very large magnitude, either positive of negative, then the optimal value also

becomes very large. Therefore, these values of k2 may be safely ignored. Note that the

constants ζ+ and ζ− that appear in the statement of the proposition do not depend on

w or k, but only on the definition of the function ψ.

Proposition 4. Let k̄2 ∈ R and w ∈ Q2. If k̄2 is a positive integer such that k̄2 > |w2|,
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then

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
≥ ζ+(w2 + k̄2)

min
k1∈Z

ψ
(
w1+k1
w2−k̄2

)
≥ ζ−(k̄2 − w2)

where ζ+ = minα∈R ψ ( α1 ) and ζ− = minα∈R ψ ( α
−1 ).

Proof. First, note that

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
≥ min

k1∈R
ψ
(
w1+k1
w2+k̄2

)
= min

α∈R
ψ (

α
w2+k̄2 )

since the integer problem is a restriction of the continuous one, and we can let α :=

w1 + k1. Then, because ψ is positively homogeneous and w2 + k̄2 > 0, we have

min
α∈R

ψ (
α

w2+k̄2 ) = (w2 + k̄2) min
α∈R

ψ ( α1 ) = ζ+(w2 + k̄2).

To obtain the second inequality, we proceed similarly. Since k̄2 − w2 > 0, we have

min
k1∈Z

ψ
(
w1+k1
w2−k̄2

)
≥ min

α∈R
ψ (

α
w2−k̄2 ) = ζ−(k̄2 − w2).

�

Algorithm 5 Trivial Lifting

1: function TrivialLifting(B, f, w)
2: Let g(ᾱ2) := minα1∈R ψ ( α1

ᾱ2 )

3: Let h(k̄2) := mink1∈Z ψ
(
w1+k1
w2+k̄2

)
4: ζ+, ζ− ← g(1), g(−1)
5: η∗ ← h(0)
6: k̄2 ← 1
7: repeat
8: η∗ ← min

{
η∗, h(k̄2), h(−k̄2)

}
9: k̄2 ← k̄2 + 1

10: until
(
k̄2 > |w2| and w2 + k̄2 >

η∗

ζ+
and k̄2 − w2 >

η∗

ζ−

)
11: return η∗

Given B, f and w, the function TrivialLifting described in Algorithm 5 computes

the optimum value of (3.3). At each iteration, it solves the two optimization problems

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
and min

k1∈Z
ψ
(
w1+k1
w2−k̄2

)
,
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for some fixed value k̄2, starting from zero, and going up. By Proposition 3, these two

problems can be easily solved. The algorithm also keeps track of the smallest optimal

value found so far, in the variable η∗. It stops when k̄2 is such that three conditions are

satisfied:

k̄2 > |w2| and w2 + k̄2 >
η∗

ζ+
and k̄2 − w2 >

η∗

ζ−
. (3.6)

This is justified by Proposition 4. Indeed, if k̄2 is such that condition (3.6) holds, then

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
≥ ζ+(w2 + k̄2) ≥ ζ+ η

∗

ζ+
= η∗

min
k1∈Z

ψ
(
w1+k1
w2−k̄2

)
≥ ζ−(k̄2 − w2) ≥ ζ−

η∗

ζ−
= η∗.

Therefore, by considering any such k̄2, the incumbent value η∗ can never be improved.

Also note that, if k̄2 is sufficiently large, then condition (3.6) is automatically satisfied.

Indeed, since η∗ ≥ h(0), then

k̄2 > max

{
h(0)

ζ+
− w2,

h(0)

ζ−
+ w2, |w2|

}
implies that the condition holds. Therefore, the algorithm will always terminate.

3.2 Preprocessing step

Although finite, the algorithm described in Section 3.1 may require a large number of

iterations to terminate. In this subsection, we describe a preprocessing step that, when

executed prior to the algorithm, greatly improves its worst-case performance. We start

with an example that illustrates this fact.

Example 6. To illustrate how pre-processing can improve the efficiency of Algorithm 5,

let B,w and f be defined as

B = conv

{(
22
69
7

)
,

(
−3

−11
7

)
,

(
−8

−26
7

)}
f =

(
2
3
1
6

)
w =

(
2
3
1
3

)
.

The set B, illustrated in Figure 3.1a, is very long and thin, which causes performance

problems for both the naive algorithm, as well as the algorithm described previously. In

fact, Algorithm 5 requires seven iterations of the main loop to output the optimal value

of 4
5
. Before feeding this data into the algorithm however, we could apply to B,w and f
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(a) Original set B (b) Modified set B̄

Figure 3.1: Example of pre-processing.

the affine unimodular transformation τ : R2 → R2 defined as

τ(x) =

(
1 −2

−5 11

)
x+

(
4

2

)
.

Let B̄, f̄ , w̄ be the set and vectors obtained, namely

B̄ = conv

{(
16
7
3
7

)
,

(
1
7

−2
7

)
,

(
−4

7
8
7

)}
f̄ =

(
1
3
1
2

)
w̄ =

(
0
3
1
3

)
.

Note that the integral part of w̄ was discarded. The set B̄, as Figure 3.1b illustrates,

is much smaller, and in particular, not very wide in the vertical direction. Feeding this

new data into Algorithm 5, we obtain the same optimal value of 4
5

as before, but now

after a single iteration of the main loop. �

As illustrated in Example 6, the performance of Algorithm 5 can be improved if, prior

to the execution of the algorithm, we apply a certain affine unimodular transformation

τ to its input. In the following, we describe exactly what properties we would like this

transformation to have, and how such a transformation could be obtained for arbitrary

maximal lattice-free sets.

We recall that, if B ⊆ R2 is a maximal lattice-free set, then B is either a split,

a triangle or a quadrilateral. Following Dey and Louveaux [36], we classify maximal

lattice-free triangles as follows:

Definition 7 ([36]).

(i) A type-1 triangle is a triangle with integral vertices and exactly one integral point

in the relative interior of each facet (see Figure 3.2b);
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(ii) A type-2 triangle is a triangle with at least one fractional vertex v, exactly one

integral point in the relative interior of two facets incident to v, and at least two

integral points on the third facet (see Figure 3.2c);

(iii) A type-3 triangle is a triangle with exactly three integral points on the boundary,

one in the relative interior of each edge (see Figure 3.2d).

Another important concept, that we make use in the following, is the width of a set

along a certain direction.

Definition 8. Given d ∈ R2, we define the width of B along d as

ωd(B) = max
b∈B

dT b−min
b∈B

dT b.

First, we would like τ to be a transformation such that the width of τ(B) along

the vertical direction ( 0
1 ) is small. Algorithm 13 and Algorithm 14 show how to obtain

such τ when B is a maximal lattice-free triangle or quadrilateral, respectively. Both

algorithms make use of the following lemma, which is implied by the proofs presented

by Hurkens [55].

Lemma 9 ([55]).

(i) If B ⊆ R2 is a maximal lattice-free triangle such that ( 0
0 ) , ( 0

1 ) , ( 1
0 ) are in the

relative interiors of distinct faces of B, then there exists d ∈ {( 0
1 ) , ( 1

0 ) , ( 1
1 )} such

that

ωd(B) ≤ 1 +
2

3

√
3.

(ii) If B ⊆ R2 is a maximal lattice-free quadrilateral such that ( 0
0 ) , ( 0

1 ) , ( 1
0 ) are in the

relative interiors of distinct faces of B, then there exists d ∈ {( 0
1 ) , ( 1

0 )} such that

ωd(B) ≤ 2.

The bound given by Lemma 9 can be slightly improved when B is a maximal lattice-

free triangle of type 1 or 2, as the next lemma shows.

Lemma 10. If B ⊆ R2 is a maximal lattice-free triangle of type 1 or 2 such that

( 0
0 ) , ( 0

1 ) , ( 1
0 ) are in the relative interiors of distinct faces of B, then there exists d ∈

{( 0
1 ) , ( 1

0 ) , ( 1
1 )} such that

ωd(B) ≤ 2.

23



Proof. If B is a type-1 triangle, then B must be the triangle depicted in Figure 3.2b.

Clearly, d = ( 1
0 ) satisfies the condition of the lemma. Now suppose that B is a type-

2 triangle. We have three subcases, depending on which facet of B contains multiple

lattice points.

For the first subcase, suppose that the facet of B that contains multiple lattice points

is the one containing ( 1
0 ) in its relative interior. In this case, the vertices of B are

(1, α), (1,−β),

(
−1

α + β − 1
,

β

α + β − 1

)
,

for some α, β ∈ R+. If ω(1,0)(B) ≤ 2, we are done. Suppose ω(1,0)(B) > 2. Then

α + β > 2, and we have

ω(0,1)(B) = 1 +
1

α + β − 1
≤ 1 +

1

2− 1
= 2.

In any case, there exists d ∈ {( 0
1 ) , ( 1

0 )} satisfying the condition of the lemma.

For the second subcase, suppose that the facet of B that contains multiple lattice

points is the one containing ( 0
1 ). Let B̄ be defined as

B̄ =

{[
0 1

1 0

]
b : b ∈ B

}

Clearly, B̄ satisfies the conditions of the first subcase. Therefore, there exists d̄ ∈
{( 0

1 ) , ( 1
0 )} such that ωd̄(B̄) ≤ 2, which implies that there exists d ∈ {( 1

0 ) , ( 0
1 )} such

that ωd(B) ≤ 2.

Finally, for the third subcase, suppose that the facet of B that contains multiple

lattice points is the one containing ( 0
0 ). We proceed similarly to the previous subcase.

Let B̄ be defined as

B̄ =

{[
1 0

−1 −1

]
b+

[
0

1

]
: b ∈ B

}
Note that B̄ is a lattice-free triangle, since the transformation is unimodular. Also, the

point ( 0
0 ) is mapped to ( 0

1 ). Therefore, B̄ satisfies the conditions of the second subcase,

and there exists d̄ ∈ {( 1
0 ) , ( 0

1 )} such that ωd̄(B̄) ≤ 2. We conclude that there exists

d ∈ {( 1
0 ) , ( 1

1 )} such that ωd(B) ≤ 2. �

Propositions 11 and 12 show that when Algorithm 13 or 14 is applied to an arbitrary

maximal lattice-free triangle or quadrilateral, it produces a transformed set that satisfies

the conditions to apply Lemmas 9 and 10. Specifically, our proposed preprocessing step
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generates lattice-free sets B̄ that have the points {( 0
0 ) , ( 1

0 ) , ( 0
1 )} in the relative interiors

of distinct faces of B, and a small width ωd(B̄) for d = ( 0
1 ).

Note that in the preprocessing step, we also transform the given vector w (correspond-

ing to the variable to be lifted) in a specific way, resulting in points (ii) of Propositions 11

and 12, which we will exploit in Section 3.3. In this process, we introduce the variable

ε, which is the middle point of B̄ along the vertical coordinate x2.

Proposition 11. Let B ⊆ R2 be a maximal lattice-free triangle containing f ∈ R2 in its

interior, and let w ∈ R2. Suppose v1, v2, v3 ∈ Z2 are lattice points in the relative interiors

of three distinct facets of B. If B̄, f̄ and w̄ are the values returned by Algorithm 13, and

if λ is the width of B̄ along the vertical direction, then:

(i) λ ≤ 1 + 2
3

√
3 if B is a type-3 triangle, and λ ≤ 2 otherwise.

(ii) |f̄2 + w̄2 − b̄2| ≤ λ+1
2

for all b̄ ∈ B̄.

Proof. (i) It is clear that τ 1 is an affine unimodular function that maps v1, v2, v3 to the

points ( 0
0 ) , ( 1

0 ) , ( 0
1 ), respectively. Furthermore, τ 1(B) satisfies the conditions for item (i)

of Lemma 9, so there exists d such that ωd(τ
1(B)) ≤ 1 + 2

3
. Additionally, by Lemma 10,

if B is a maximal lattice-free triangle of types 1 or 2, then ωd(τ
1(B)) ≤ 2. If d = ( 0

1 ),

then the direction that minimizes the width of τ 1(B) is already the vertical direction.

In that case, τ 2 = τ 1, and we are done. If d = ( 1
0 ), then the direction that minimizes

the width of τ 1(B) is the horizontal direction. To obtain τ 2, the algorithm composes

τ 1 with a transformation that flips the two coordinates. Finally, if d = ( 1
1 ), then the

direction that minimizes the width of τ 1(B) is perpendicular to the line connecting ( 1
0 )

and ( 0
1 ). To obtain τ 2, the algorithm composes τ 1 with a transformation that maps

( 0
0 ) , ( 0

1 ) , ( 1
0 ) to ( 0

1 ) , ( 0
0 ) , ( 1

0 ), respectively. The direction that minimizes the width of

τ 2(B), therefore, is perpendicular to the line that connects ( 0
0 ) , ( 1

0 ), which is the vertical

direction, as desired.

(ii) Let ε := max{b2:(b1,b2)∈B}+min{b2:(b1,b2)∈B}
2

be the middle point of B along the vertical

direction. By definition, |ε− b̄2| ≤ λ
2
, for all b̄ ∈ B̄. We also claim that |f̄2 + w̄2− ε| ≤ 1

2
.

This is true, since, for every x ∈ R, if we let x̄← x+
⌊
ε+ 1

2
− x
⌋

then |x̄− ε| ≤ 1
2
, and

it is the exact transformation applied to w′2 in the algorithms. The result then follows,

since, for every b̄ ∈ B̄, we have:

|f̄2 + w̄2 − b̄2| = |f̄2 + w̄2 − ε+ ε− b̄2|

≤ |f̄2 + w̄2 − ε|+ |ε− b̄2|

≤ 1

2
+
λ

2
. �
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Proposition 12. Let B ⊆ R2 be a maximal lattice-free quadrilateral with f ∈ R2 in its

interior, and let w ∈ R2. Suppose v1, . . . , v4 ∈ Z2 are lattice points in the relative interi-

ors of four distinct facets of B. If B̄, f̄ and w̄ are the values returned by Algorithm 14,

then (i) the width of B̄ along the vertical direction is at most 2, and (ii)

|f̄2 + w̄2 − b̄2| ≤
3

2
∀b̄ ∈ B̄.

Proof. Similarly to the proof of Proposition 11, it is clear that τ 1 is an affine unimodular

function that maps v1, v2, v3 to the points ( 0
0 ) , ( 1

0 ) , ( 0
1 ), respectively. Since v̄4 ∈ Z2,

since the area of the quadrilateral defined by v̄1, . . . , v̄4 is one, and since no v̄i is a

convex combination of the others, then v̄4 can only be either ( 1
1 ) , ( −1

1 ) or ( 1
−1 ). The

transformation τ 2 maps v̄1, . . . , v̄4 to ( 0
0 ) , ( 0

1 ) , ( 1
0 ) and ( 1

1 ). Furthermore, τ 2(B) satisfies

the conditions for item (ii) of Lemma 9, therefore there exists d such that ωd(τ
1(B)) ≤ 2.

To finish, we proceed similarly to the proof of (ii) in Proposition 11, replacing λ by its

upper bound 2. �

Algorithm 13 Preprocessing step for triangles

1: function Preprocess(B, f, w, v1, . . . , v3)

2: Let τ 1(x) =
[
v2 − v1 v3 − v1

]−1
(x− v1)

3: Let d ∈ {( 1
1 ) , ( 1

0 ) , ( 0
1 )} such that ωd(τ

1(B)) is minimum.

4: Let τ 2(x) =



τ 1(x) if d = ( 0
1 )[

0 1

1 0

]
τ 1(x) if d = ( 1

0 )[
1 0

−1 −1

]
τ 1(x) +

[
0

1

]
if d = ( 1

1 )

5: Let B̄ = {τ 2(x) : x ∈ B}, f̄ ← τ 2(f), w′ ← τ 2(w)
6: Let ε ∈ R such that |b̄2 − ε| ≤ 1

2
ω(0,1)(B̄) for all b̄ ∈ B̄

7: Let w̄1 ← w′1 and w̄2 ← w′2 +
⌊
ε+ 1

2
− f̄2 − w′2

⌋
8: Return B̄, f̄ , w̄

3.3 Complexity analysis

In this section we study the worst case complexity of Algorithm 5. First, in Subsec-

tion 3.3.1, we assume only that the convex lattice-free set B ⊆ R2 is bounded and

full-dimensional (i.e. we do not assume maximality at this point). We obtain an up-

per bound on the number of iterations of the algorithm, which depends on the second

26



Algorithm 14 Preprocessing step for quadrilaterals

1: function Preprocess(B, f, w, v1, . . . , v4)

2: Let τ 1(x) =
[
v2 − v1 v3 − v1

]−1
(x− v1)

3: Let v̄i ← τ 1(vi) for i = {1, . . . , 4}

4: Let τ 2(x) =



τ 1(x) if v̄4 = ( 1
1 )[

1 0

1 1

]
τ 1(x) if v̄4 = ( 1

−1 )[
1 1

0 1

]
τ 1(x) if v̄4 = ( −1

1 )

5: Let d ∈ {( 1
1 ) , ( 1

0 ) , ( 0
1 )} such that ωd(τ

1(B)) is minimum.

6: Let τ 3(x) =


τ 2(x) if d = ( 0

1 )[
0 1

1 0

]
τ 2(x) if d = ( 1

0 )

7: Let B̄ = {τ 2(x) : x ∈ B}, f̄ ← τ 2(f), w′ ← τ 2(w)
8: Let ε ∈ R such that |b̄2 − ε| ≤ 1

2
ω(0,1)(B̄) for all b̄ ∈ B̄

9: Let w̄1 ← w′1 and w̄2 ← w′2 +
⌊
ε+ 1

2
− f̄2 − w′2

⌋
10: Return B̄, f̄ , w̄

covering minimum of B and the width of B along the vertical direction. Next, in Subsec-

tion 3.3.2, we focus on the case where B is a maximal lattice-free triangle or quadrilateral.

Assuming that B has been preprocessed, we prove that Algorithm 5 requires at most a

small number of iterations to finish.

3.3.1 Convex lattice-free sets in general

Let B ⊆ R2 be a bounded and convex lattice-free set containing the point f ∈ R2 in its

interior. We do not assume that B is maximal. In this section, for any γ > 0, we denote

by γB the set obtained by scaling B by a factor of γ, using f as the origin. That is,

γB = {γ(b− f) + f : b ∈ B}

=

{
x ∈ R2 :

x

γ
+
f(γ − 1)

γ
∈ B

}
.

The two following lemmas prove that, if the union of all integer translations of γB cover

R2, then the value of the trivial lifting πB(w) is at most γ, for any w ∈ R2.

Lemma 15. For any w ∈ R2 and γ > 0, if w + f ∈ γB, then ψB(w) ≤ γ.
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Proof.

ψB(w) = inf
{
λ :

w

λ
+ f ∈ B, λ > 0

}
= inf

{
λ :

w + f

λ
+
f(λ− 1)

λ
∈ B, λ > 0

}
= inf {λ : w + f ∈ λB, λ > 0}

≤ γ

�

Lemma 16. If γB + Z2 = R2 for some γ > 0, then πB(w) ≤ γ for all w ∈ R2.

Proof. Let w ∈ R2. Since γB + Z2 = R2, there exist b ∈ γB and k ∈ Z2 such that

w + f = b + k. This implies that w + f − k belongs to γB. By the previous lemma,

πB(w − k) ≤ γ. But note that πB(w − k) = πB(w), since applying integer translations

to the ray does not change the value of the trivial lifting function. We conclude that

πB(w) ≤ γ. �

In the following, let µ be the smallest non-negative number such that µB+Z2 = R2.

This number is also known as the second covering minimum of B [57]. As we recall, in

order to evaluate the function

πB(w) = min
k∈Z2

ψB(w + k),

for a given w ∈ R2, we computed mink1∈Z ψB

(
w1+k1
w2+k̄2

)
for different values of k̄2 ∈ Z. The

next lemma shows that, if µB does not intersect the horizontal line at level f2 +w2 + k̄2,

for a particular k̄2 ∈ Z, then such k̄2 can be safely discarded.

Lemma 17. Let k̄2 ∈ Z and µ > 0. Suppose there does not exist b ∈ µB such that

b2 = f2 + w2 + k̄2. Then

min
k1∈Z

ψB

(
w1+k1
w2+k̄2

)
≥ min

α∈R
ψB (

α
w2+k̄2 ) > µ.

Proof. Note that

min
k1∈Z

ψB

(
w1+k1
w2+k̄2

)
≥ min

k1∈R
ψB

(
w1+k1
w2+k̄2

)
= min

α∈R
ψB (

α
w2+k̄2 ) = µmin

α∈R
ψµB (

α
w2+k̄2 ) .

Since we have f + (
α

w2+k̄2 ) 6∈ µB for every α ∈ R, then ψµB (
α

w2+k̄2 ) > 1 for every α ∈ R,

and the result follows. �
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A consequence of Lemma 17 is that, if µB is not very wide in the vertical direction,

then we only need to consider few values of k̄2 when computing the trivial lifting. This

motivates the choice of τ in Section 3.2. The next theorem shows that Algorithm 5 does

not spend time considering such useless k̄2.

Theorem 18. Let B ⊆ R2 be a lattice-free set with f ∈ R2 in its interior, with second

covering minimum µ ∈ R+. If w ∈ R2 is such that

|f2 + w2 − b2| ≤ σ ∀b ∈ µB, (3.7)

for some σ ≥ 1, then Algorithm 5 stops after at most bσc iterations of the main loop

upon receiving B, f and w as input.

Proof. If there exists b ∈ µB satisfying (3.7) with equality, we can always increase σ

very slightly to obtain

|f2 + w2 − b2| < σ ∀b ∈ µB,

while keeping bσc unchanged. We may assume, therefore, that every b ∈ µB satisfies

(3.7) strictly. If the algorithm stops before bσc iterations, we are done. Suppose, then,

that it runs for at least bσc iterations. First, we prove that, at the end of iteration bσc,
we have η∗ = πB(w) ≤ µ. Let Σ = {− bσc , . . . , bσc}. Clearly, at the end of iteration

bσc, the variable η∗ has value mink2∈Σ h(k2). By definition, we also have

πB(w) = min
k2∈Z

h(k2) = min

{
min
k2∈Σ

h(k2), min
k2∈Z\Σ

h(k2)

}
= min

{
η∗, min

k2∈Z\Σ
h(k2)

}
.

By Lemma 16, πB(w) ≤ µ. By Lemma 17, mink2∈Z\Σ h(k2) > µ. Therefore, η∗ =

πB(w) ≤ µ. Now we prove that the algorithm stops at the end of iteration bσc. First,

we prove that k̄2 > |w2|. At the end of iteration bσc, the value of k̄2 is bσc + 1. By

assumption, σ > |f2 + w2 − b2| for every b ∈ µB. Since f ∈ µB, we have σ > |w2|.
Therefore, k̄2 = bσc + 1 ≥ σ > |w2|. Now we prove that w2 + k̄2 >

η∗

ζ+
. Since k̄2 has

value bσc+ 1, there does not exist b ∈ µB such that b2 − f2 − w2 = k̄2. By Lemma 17,
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(a) Quadrilateral (b) Type-1 triangle (c) Type-2 triangle (d) Type-3 triangle

Figure 3.2: Proof of Lemma 19.

and since k̄2 > |w2|, as proved earlier, we have

min
α∈R

ψB (
α

w2+k̄2 ) > µ ≥ η∗

⇒(w2 + k̄2) min
α∈R

ψB ( α1 ) > η∗

⇒(w2 + k̄2)ζ+ > η∗

⇒w2 + k̄2 >
η∗

ζ∗
.

We can similarly prove that k̄2 − w2 >
η∗

ζ−
. Therefore, at the end of iteration bσc, the

loop condition is satisfied, and the algorithm stops. �

3.3.2 Maximal lattice-free sets

Now we suppose that B ⊆ R2 is a bounded maximal lattice-free set containing f in its

interior. In this case, B is either a maximal lattice-free triangle or a maximal lattice-free

quadrilateral. Maximal lattice-free sets are interesting in practice, since these are the

sets that generate the strongest valid inequalities for the infinite continuous multi-row

relaxation. Aside from triangles and quadrilaterals, maximal lattice-free sets include

splits, but the latter can be lifted easily by means of a closed formula. We will show

that Algorithm 5 requires at most one or four iterations of the main loop to finish,

depending on whether B is a type-3 triangle or not.

It is well known that the second covering minimum of any lattice-free set must be

at least one. The following lemma shows the second covering minimum of B is also

bounded above by a constant. Although this result is probably known as well, to the

best of our knowledge, it was not proved explicitly in the literature, and it is included

here for completeness.

Lemma 19. Let B ⊆ R2 is a full-dimensional maximal lattice-free set. If B is a type-1
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triangle, a type-2 triangle or a quadrilateral, then µ ≤ 1. If B is a type-3 triangle, then

µ ≤ 2.

Proof. For any set B ⊆ Rn, we know that B + Zn = Rn if and only if τ(B) + Zn = Rn,

where τ is any unimodular affine transformation. Suppose B is a maximal lattice-free

quadrilateral. By applying a unimodular affine transformation, we may assume that

the points ( 0
0 ) , ( 0

1 ) , ( 1
0 ) and ( 1

1 ) are in the relative interiors of four distinct facets of B.

Therefore, B contains the unit square, and clearly B + Z2 = R2. The same argument

applies for type-1 and type-2 triangles. See Figure 3.2 for an illustration. Now suppose B

is a type-3 triangle. We may assume that the points ( 0
0 ) , ( 0

1 ) and ( 1
0 ) are in the relative

interiors of three distinct facets of B. The set 2B, therefore, contains a translated type-1

triangle as a subset. By the previous case, 2B + Z2 covers R2. �

Now we proceed to obtain upper bounds on the number of iterations of Algorithm 5

for maximal lattice-free sets, by applying Theorem 18. We consider two distinct cases,

depending on whether B is a type-3 triangle or not. In every case, we assume that

B, f and w have been preprocessed either by Algorithm 13 or by Algorithm 14. First,

suppose that B is either a type-1 triangle, or a type-2 triangle, or a quadrilateral. The

next theorem shows that the algorithm stops after a single iteration of the main loop.

Theorem 20. Let B ⊆ R2 be a maximal lattice-free quadrilateral or triangle of types 1

or 2 containing f ∈ R2 in its interior and having vertical width at most 2. If w ∈ R2 is

such that

|f2 + w2 − b2| ≤
3

2
∀b ∈ B,

then, upon receiving B, f and w as input, Algorithm 5 stops after at most a single

iteration of the main loop.

Proof. Let µ be the second covering minimum of B. By Lemma 19, µ ≤ 1. Since every

lattice-free set has second covering minimum at least one, then µ = 1. Therefore,

|f2 + w2 − b2| ≤
3

2
∀b ∈ µB.

By Theorem 18, we conclude that Algorithm 5 requires at most
⌊

3
2

⌋
= 1 iteration to

finish. �

This case is closely related to the closed formula presented by Basu, Bonami, Cornuéjols

and Margot [19], which can compute trivial lifting coefficients under the assumption
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that B is a type-1 or type-2 maximal lattice-free triangle. Although the formula itself

is closed, it assumes that B is already in some standard form, and thus requires the

application of a pre-processing step. The formula works by evaluating the function ψB

at six points, in the worst case, and taking the minimum.

Theorem 20 proves that Algorithm 5 requires constant time to finish in the worst

case. More interestingly, however, this theorem shows that the algorithm requires at

most a single iteration of the main loop, implying that at most six calls to evaluate the

function ψB are needed. This matches the number of calls made by the closed formula

presented by Basu et al. Also note that Algorithm 5 requires the same number of calls

when B is a maximal lattice-free quadrilateral, while the aforementioned closed formula

does not apply for quadrilaterals.

Now we consider the case where B is a type-3 triangle. In this case, since both the

maximum width along the vertical direction, as well as the second covering minimum,

can be higher than before, the algorithm may require more iterations to terminate. In

the worst case, however, it still requires at most a low, constant number of iterations.

Lemma 21. Let B ⊆ R2 be a lattice-free set with f ∈ R2 in its interior. Also, let

w ∈ R2 and γ > 0 such that

|f2 + w2 − b2| ≤ γ ∀b ∈ B.

Then, for any µ ≥ 1,

|f2 + w2 − b̄2| ≤ γ(2µ− 1) ∀b̄ ∈ µB.

Proof. Let b̄ ∈ µB. By definition, there exists b ∈ B such that b̄ = µ(b− f) + f . Also,

since f ∈ B and |f2 + w2 − b2| ≤ γ for every b ∈ B, we have |w2| ≤ γ. Therefore,

|f2 + w2 − b̄2| = |f2 + w2 − µ(b2 − f2)− f2|

= |µ(f2 + w2 − b2)− (µ− 1)w2|

≤ µ|f2 + w2 − b2|+ (µ− 1)|w2|

≤ µγ + (µ− 1)γ

= γ(2µ− 1)

�

Theorem 22. Let B ⊆ R2 be a type-3 triangle containing f ∈ R2 in its interior and
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having vertical width at most 1 + 2
3

√
3. If w ∈ R2 is such that

|f2 + w2 − b2| ≤ 1 +
1

3

√
3 ∀b ∈ B,

then, upon receiving B, f and w as input, Algorithm 5 stops after at most four iterations

of the main loop.

Proof. Let µ be the second covering minimum of B. By Lemma 21,

|f2 + w2 − b2| ≤
(

1 +
1

3

√
3

)
(2µ− 1) ∀b ∈ µB.

Since µ ≤ 2 by Lemma 19, we have

|f2 + w2 − b2| ≤ 3 +
√

3 ∀b ∈ µB.

Therefore, by Theorem 18, we conclude that Algorithm 5 requires at most
⌊
3 +
√

3
⌋

= 4

iterations to finish. �

It is worth noting that the upper bound on the number of iterations obtained in

Theorem 22 is a worst-case upper bound and that the actual run time for some type

3 triangles can be smaller. For instance, the example shown in Figure 3.3b is a type 3

triangle that is very close to being a type 2 triangle (Figure 3.3a), so its trivial lifting

coefficient and the runtime of the algorithm are likely similar to the type 2 case. On

the other hand, the worst case runtime will be obtained by a type 3 triangle with high

second covering minimum, like the one seen in Figure 3.3c.

Another issue worth mentioning is that, computationally, it may be difficult to dif-

ferentiate between the cases in Figures 3.3a and 3.3b, due to numerical inaccuracy. This

highlights a big advantage of the generic trivial lifting algorithm presented in this work,

which computes the correct coefficient for any (even non-maximal) lattice-free set, as

opposed to one that relies on the particular format of the maximal lattice-free set.

3.4 Computational experiments

In order to evaluate the practical efficiency of Algorithm 5, we implemented it and

compared it against two variations of the naive method described in the introduction

and against a black-box MIP solver given the formulation of Averkov and Basu [9].
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(a) Type-2 triangle (b) “Good” type-3 triangle (c) “Bad” type-3 triangle

Figure 3.3: Illustration of “good” and “bad” type 3 triangles.

3.4.1 Algorithms and variations

Two variations of Algorithm 5 were implemented and tested. The first variation (bound-orig)

applies the procedure directly to the input data, without performing any kind of prepro-

cessing, while the second variation (bound-pre) applies the preprocessing step described

in Section 3.2. Both variations were implemented in standard C, and do not make use

of any external dependencies. The complete source code has been made available online

[67]. To evaluate the function

min
α1∈R

ψ

(
α1

ᾱ2

)
, (3.8)

where ᾱ2 is fixed, an ad-hoc method was used, instead of a generic LP solver, in order

to minimize the computational overhead. More precisely, if B ⊆ R2 is a polyhedron

containing f ∈ R2 in its interior, then B can be written as

B = {x ∈ R2 : ai(x− f) ≤ 1, i ∈ {1, . . . , t}}

where a1, . . . , at ∈ R2. Then (3.8) is equivalent to the linear program

minimize ε

subject to ε− ai1α1 ≥ ai2ᾱ2 i = 1, . . . , t

ε, α1 free

Since, in our experiments, B is always a maximal lattice-free set, this LP has at most

a constant and very small number of bases. Instead of calling a generic LP solver, we

simply enumerated all these bases, and found the one with best objective value.

We also implemented and tested two variations of the naive trivial lifting algorithm.

The first variation (naive-fixed) simply evaluates the function ψ(w + k) for all k ∈
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[−M,M ]2, where M is a large constant which does not depend on any input data. During

our tests, this value was fixed to 50. This variation is the simplest to implement, and

probably the most widespread, but does not always produce the correct answers, since,

for every fixed M , there is always a lattice-free set B ⊆ R2 such that M is not large

enough for B. The second variation (naive-bbox) solves this problem by computing the

bounding box for each lattice-free set B, and evaluating all ψ(w+ k) for all k such that

f + w + k is either inside or reasonably close to the bounding box. In order to avoid

exceedingly long running times on some hard instances, the bounding box was intersected

with a box [−M,M ]2 of fixed size, where M is a large constant which was fixed to 104 in

our tests. Setting this constant to a smaller value reduces the maximum running time

of naive-bbox, but increases the probability of generating incorrect answers.

All computations, for all the variations previously described, were performed in float-

ing point arithmetic, due to the observation that small arithmetical errors are not ampli-

fied by the algorithms, and therefore have no significant impact in the final cut coefficient.

The code used to evaluate the function ψ(w) for a certain w ∈ R2 was also exactly the

same.

Finally, we also modeled (3.3) as a mixed-integer linear program with a fixed number

of variables, as described in [9], and we solved it using IBM ILOG CPLEX, version 12.4.

We refer to this implementation as mip. Because we use a generic MIP solver (based

on branch-and-bound and the simplex method), even in fixed dimension, the worst-

case running time is exponential in the encoding size of the problem, while it could be

polynomial in theory. This choice was made because, to the best of our knowledge,

there is no currently-available MIP solver that is polynomial in fixed-dimension and

competitive with CPLEX, for MIPs containing both continuous and integral variables.

3.4.2 Instances

For our computational experiments, an instance of the trivial lifting problem consists of

a convex lattice-free set B ⊆ R2, along with an interior point f ∈ R2, and a list of rays

w1, . . . , wk that should be lifted. We use a list of rays, instead of a single ray, since, in

practice, a cut generator usually needs to lift, for the same intersection cut, multiple rays

corresponding to different integer variables. By receiving a list of rays in advance, the

cut generator may perform a preprocessing step exactly once, before the trivial lifting

computations begin, instead of one time for each ray. The decision of whether to apply

some costly preprocessing step could also depend on the number of rays to be lifted,

although we limited ourselves to a fixed choice here.
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In our experiments, we used two lists of lattice-free sets. The first list was obtained

by running the two-row intersection cut generator implemented by Louveaux and Poir-

rier [60] on the benchmark set of the MIPLIB 2010 [58] and capturing, for each intersec-

tion cut generated, the associated lattice-free set. This list was then filtered to exclude

splits, since these can be lifted easily, and non-maximal lattice-free sets, since these can

be transformed into maximal lattice-free sets. Finally, a sample of 1000 lattice-free sets

from this list, picked randomly, was considered for our experiments. The second list of

lattice-free sets was obtained by applying a shear transformation to each set on the first

list. The precise transformation was given by

f(x) =

[
51 5

10 1

]
x.

This transformed list has sets that resemble the set from Figure 3.1a, and can be seen

as a pathological scenario for trivial lifting algorithms.

For each lattice-free set on each list, we also randomly generated a fixed number of

rays wi, uniformly distributed inside the box [0, 1)2. The lists of rays were generated

randomly, since we observed that the choice of rays to be lifted had negligible impact in

the performance of the algorithms considered. Most of the impact came, instead, from

the choice of lattice-free sets. This also allowed us to evaluate the impact of lifting a

different number of rays for each lattice-free set.

3.4.3 Results and discussion

First, we focus on the unmodified list of lattice-free sets obtained from the cut-generator.

Table 3.1 summarizes the CPU running times that each of the four algorithms took to

process this list of lattice-free sets, with 100 randomly generated rays per set. The

running time to process one lattice-free set includes any time spent on preprocessing

the set, plus the time spent computing the lifted coefficients for all the rays. For each

algorithm, the table shows the average, the median and the maximum running times in

milliseconds to process each set. The table also shows the percentage of sets for which

at least one cut coefficient was calculated incorrectly.

As Table 3.1 shows, algorithm bound-pre presented the fastest average running

time among all variations for this set of instances, taking only 0.059 ms on average

to process each set. This was more than 9, 150, 390 and 2400 times faster on aver-

age than bound-orig, naive-bbox, naive-fixed and mip, respectively. It performed

consistently well on all instances, having a maximum running time of only 0.100 ms.
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bound-pre bound-orig naive-bbox naive-fixed mip

Average (ms) 0.059 0.565 9.341 23.278 141.938
Median (ms) 0.060 0.068 2.120 23.080 129.200
Maximum (ms) 0.100 33.264 1769.880 30.080 947.600
Failure Rate 0.0 % 0.0 % 0.0 % 0.3 % 0.0 %
Best 83.6 % 37.2 % 0.0 % 0.0 % 0.0 %
Avg Ratio to Best 1.015 9.483 159.449 402.950 2449.938

Table 3.1: Running times statistics: original lattice-free sets, 100 rays per set.

bound-pre bound-orig naive-bbox naive-fixed mip

Average (ms) 0.062 4.709 5473.688 23.374 1906.081
Median (ms) 0.064 0.440 21.200 23.160 582.800
Maximum (ms) 0.108 485.760 392259.600 32.120 94620.000
Failure Rate 0.0 % 0.0 % 0.1 % 10.0 % 1.7 %
Best 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %
Avg Ratio to Best 1.000 74.602 87472.010 380.532 31250.644

Table 3.2: Running times statistics: transformed lattice-free sets, 100 rays per set.

Algorithms bound-orig, naive-bbox and mip, on the other hand, presented significant

slowdown for some instances, having maximum running times of 33, 1769 ms and 947

ms respectively, which is more than 480, 830 and 7 times their medians. Although al-

gorithm naive-fixed was consistent and had a better worst-case running time than

naive-bbox, we note that it failed to compute some coefficients correctly.

Table 3.1 also shows that, for each instance, the best running time was obtained

either by bound-pre or bound-orig, and never by the other algorithms. Algorithms

bound-pre and bound-orig presented average ratio-to-best of 1.015 and 9.483 respec-

tively. Although bound-orig was faster than bound-pre for some instances, it was only

very slightly so. For instances where bound-pre was faster than bound-orig, however,

the difference in running times was much more significant.

Now we consider the second list of lattice-free sets, obtained by applying a shear

transformation to the sets of the first list, with 100 randomly generated rays per set.

Table 3.2 summarizes the running times for all algorithms. The transformation had

virtually no impact on the performance of algorithm bound-pre. Its average, median

and maximum running times remained almost unchanged. The median running times

for algorithms bound-orig, naive-bbox and mip, on the other hand, became on average
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6, 10 and 4 times slower than before, respectively. For some instances, naive-bbox and

mip required minutes of processing time, while bound-pre required only a fraction of

millisecond. The table also shows that failure rate of algorithm naive-fixed increased

considerably, to 10%. Algorithm mip calculated some coefficients incorrectly, due to

insufficient numerical precision. Because of our restriction on the maximum size of

the bounding boxes, algorithm naive-bbox also produced some incorrect coefficients.

Algorithm bound-pre presented the best performance for every instance in this set.
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Chapter 4

Intersection Cuts from the
Infinity Norm

As discussed in Section 2.2, valid inequalities for the continuous multi-row relaxation

can be easily generated from maximal lattice-free sets, and these inequalities can be used

as cutting planes for solving general MIPs. One important computational question is to

decide which inequalities to use. In this chapter, we propose a new subset of intersection

cuts, derived based on the infinity norm, and we run computational experiments to

measure their effectiveness.

Consider the continuous multi-row relaxation of the simplex tableau, given by

x = f +
m∑
j=1

rjsj

x ∈ Zn

s ∈ Rm
+ ,

(C)

where f ∈ Qn \ {0} and r1, . . . , rj ∈ Qn \ {0}. As discussed in Section 2.2, valid

inequalities for (C) can be constructed from lattice-free sets. More specifically, if B ⊆ Rn

is a lattice-free set containing f in its interior, and if ψ is the gauge function of B − f ,

then the inequality
m∑
j=1

ψ(rj)sj ≥ 1, (4.1)

is valid for (C). In the following, we will refer to (4.1) as the intersection cut obtained

from B, and, for conciseness, when (4.1) is facet-defining for the convex hull of (C), we

will say that B itself is facet-defining.

We recall that our interest in valid inequalities for (C) comes from the fact that

they can be used as cutting planes to solve general mixed-integer optimization problems
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(MIPs). From this perspective, we are interested in inequalities from (C) that cut off

the current fractional basic solution (x, s) = (f, 0). It can be easily verified, however,

that any intersection cut generated as described above satisfies this requirement. An

important practical question, then, is to decide which intersection cuts from (C) to use

in a cutting plane algorithm. Various factors must be considered, including the speed in

which these cuts can be generated and the total number of cuts used. In the following,

we present some cut selection strategies that have been proposed in the literature, as

well as their impact on solving MIPs.

In the first extensive computational experiments on the impact of using multi-row

intersection cuts, Espinoza [42] considers intersection cuts generated from three simple

families of bounded, maximal lattice-free polyhedra. The lattice-free sets considered have

fixed shape, and, in particular, do not change according to the values rj. The impact of

each family of cuts, for a different number of tableau rows, was measured individually on

instances from MIPLIB 3.0 and MIPLIB 2003. The cuts improved both the LP bound

obtained at the root node of the branch-and-bound tree, as well as the total running

time of the algorithm. The best configurations, compared against CPLEX 11.0 defaults,

increased the gap closed at the root node by 2.5 percentage points and reduced the

overall running time by 5%. Interestingly, the family of intersection cuts that presented

the best results was never facet-defining for (C). The paper concludes that even simple

subclasses of intersection cuts from (C) can have positive impact on the performance

of branch-and-cut algorithms, and points to identifying additional important subclasses

of such cuts, along with good computational implementation choices, as an interesting

research question.

Musalem [64] focuses on generating multi-row intersection cuts πT s ≥ 1 that min-

imize the 1-norm and the 2-norm of the vector π. The problem of finding these cuts

is modeled as a MIP and solved using column generation. Computational experiments

are conducted on instances from MIPLIB 3.0, and the results are compared against the

split cut separator implemented by Balas and Saxena [16]. Results are negative, as the

1-norm cut separator was only able to close 34% of the integrality gap at the root node,

on average, under a two-hour time limit, while the split cut separator is able to close

86% of the gap, under a 10-hour time limit. Yamangil [70] also performs computational

experiments on cuts minimizing the 1-norm, for relaxations with 2 to 5 rows. Compared

against CPLEX defaults, these cuts closed, on average, 60% of the integrality gap at the

root node, while CPLEX closed 52%.

Dey, Lodi, Tramontani and Wolsey [34, 35] focus on the specific case where (C)

is a two-row relaxation. They evaluate the impact of cuts generated from maximal
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lattice-free triangles and from two-row splits, compared against, and in conjunction

with, Gomory Mixed-Integer (GMI) cuts. Because the number of suitable triangles, even

when restricted to facet-defining ones, is very large, they develop a heuristic procedure

to select a small, but effective subset of triangles. Experiments are conducted both on

a set of randomly generated instances and on a subset of MIPLIB 3.0 instances. While

both families of two-row intersection cuts, used together, proved useful for all sets of

instances, most of the improvement for real-world instances came from two-row split

cuts.

Basu, Bonami, Cornuéjols and Margot [19] also focus on the two-row case. They

generate cuts from relaxations where one component of f is integral and the other is

fractional. This typically occurs when (C) comes from a tableau whose basis is degen-

erate. They measure the impact of a restricted subset of lattice-free triangles, carefully

chosen so that the separation and trivial lifting procedure can be done through simple

closed formulas. To measure the strength of these cuts, they use the method diving

towards a feasible solution, described by Margot [63]. The conclusion is that the family

of two-row cuts tested is not competitive with GMI cuts.

Louveaux and Poirrier [60] also focus on the two-row case, but instead of considering

lattice-free sets with specific shapes, they develop an exact separator that, given a point

(x̄, s̄), either finds an intersection cut from (C) that cuts off this point, or proves that

no such intersection cut exists. In this way, they can evaluate the impact of using all

facet-defining intersection cuts for (C) simultaneously, without explicitly enumerating

them. By using techniques to reduce the complexity of the polar set of (C), they are

able to obtain a method that works well in practice, despite having no guarantee of

polynomial running time. They conclude that the gap closed by two-row cuts, on top

of single-row cuts, is considerable, although much of that closure can be achieved from

split cuts. In later experiments, Louveaux, Poirrier and Salvagnin [61] develop another

exact separator that, although much slower than the former, can separate over several

variations of (C), and can handle relaxations with arbitrary numbers of rows.

Following the direction proposed by Espinoza [42], our goal in this chapter is to

identify additional subclasses of intersection cuts generated from (C) that can be easily

computed in practice and that, when used as cutting planes for solving MIPs, provide

benefits comparable to using all the facet-defining inequalities for (C). While many

strategies have been proposed for two-row relaxations and triangles, other subclasses of

intersection cuts, specially for relaxations with more than two rows, have received much

less attention.

In this chapter, we introduce a new subset of intersection cuts from (C), based on
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the infinity norm, which has many interesting properties. First, it is very small, with

exactly one cut per continuous multi-row relaxation. Its cuts are minimal, which implies

that they are not very easily dominated. Unlike the classes introduced by [34, 35] and

[19], it works for relaxations with arbitrary numbers of rows, and unlike the subclasses

introduced by [42], it takes into account the values of the variables rj. Finally, these

cuts have an interesting geometrical interpretation, which we exploit in order to compute

them more efficiently.

We start in Section 4.1, by giving a precise definition of these cuts and proving some

of their basic properties. In Section 4.2 we describe an algorithm for generating them.

Finally, in Section 4.3, we run extensive computational experiments to evaluate their

strength. We conclude that these cuts yield, in terms of gap closure, about 50% of the

benefits of using the exact separator, but at a small fraction of the computational cost,

and with a significantly smaller number of cuts.

4.1 Definition of infinity cuts

In this chapter, we consider the finite continuous multi-row relaxation (C). We assume

that this relaxation has at least one feasible solution, in which case it can be proved that

every valid inequality that cuts off the point (f, 0) can be written as

m∑
i=1

πisi ≥ 1,

where π1, . . . , πm ≥ 0. Since the variables si are non-negative, we are generally interested

in cuts that have small πi coefficients. A natural idea, therefore, is to consider cuts

that minimize ‖π‖ for different norms. Musalem [64] and Yamangil [70] performed

computational experiments with cuts minimizing the 1-norm and the 2-norm. In this

chapter, we study intersection cuts that minimize the infinity norm.

Given a vector π ∈ Rm, we recall that the infinity norm of π is given by

‖π‖∞ = max{|π1|, . . . , |πm|}.

Since this norm only takes into account the coefficient with largest magnitude, cuts that

minimize it, in a sense, try to assign, with equal priority, good coefficients to all the

variables. Next, we describe a simple geometric way of obtaining a cut that minimizes
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the infinity norm. Consider the inequality

m∑
i=1

εsi ≥ 1, (4.2)

where ε > 0. Using the framework of intersection cuts, as introduced in Section 2.2, we

can prove that inequality (4.2) is valid for (C) by verifying that a certain convex set is

lattice-free, as the next lemma shows.

Lemma 23. For every ε > 0, if the convex set

B(ε) = conv

(
{f} ∪

{
f +

1

ε
ri : i ∈ {1, . . . ,m}

})
.

is a lattice-free set, then (4.2) is valid for (C).

Proof. Let ψ be the gauge function of B(ε)− f . We recall that, by definition,

ψ(r) = inf
{
ε > 0 :

r

ε
+ f ∈ B(ε)

}
∀r ∈ Qn.

For every i ∈ {1, . . . ,m}, since f + 1
ε
ri ∈ B(ε), then ψ(ri) ≤ ε. Using the results from

Section 2.2, we know that
∑m

i=1 ψ(ri)si ≥ 1 is a valid inequality for (C). Since this

inequality is at least as strong as (4.2), we conclude that (4.2) is also a valid inequality

for (C). �

From the previous lemma and from the fact that f /∈ Zn, it is clear that, for a

large enough ε, the set B(ε) is lattice-free, and therefore (4.2) is valid. One strategy

for obtaining a cut that minimizes the infinity norm, therefore, is to start with a very

large value of ε and slowly decrease it, while making sure that the set B(ε) is lattice-

free. We stop when an integer point touches the boundary of B(ε). Although a cut

that minimizes the infinity norm can be easily obtained in this way, we note that such

cut is not necessarily minimal, and, in most cases, can be further strengthened. This is

illustrated in the next example.

Example 24. Consider the continuous relaxation

x =

(
1
2
1
2

)
+

(
0
1
2

)
s1 +

(
1
4
1
2

)
s2 +

(
1
2

0

)
s3 +

(
0

−1
4

)
s4 +

(
−1

2

0

)
s5

x ∈ Z2

s ∈ R5
+

(4.3)
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(c) Level 3

Figure 4.1: Example of infinity cut for a two-row relaxation with 5 rays.

The set B
(

2
3

)
is illustrated in Figure 4.1a. Since this set is lattice-free and the point

x = (1, 1) belongs to its boundary, we conclude that

2

3
s1 +

2

3
s2 +

2

3
s3 +

2

3
s4 +

2

3
s5 ≥ 1

is an intersection cut that minimizes the infinity norm. Note, however, that this cut is

not minimal. Indeed, it is dominated by the cut

1

2
s1 +

2

3
s2 +

2

3
s3 +

1

4
s4 +

1

2
s5 ≥ 1,

which can be obtained from the lattice-free set illustrated in Figure 4.1c. �

As the previous example illustrates, although the cuts obtained using the previous

strategy minimize the infinity norm, they are not necessarily minimal. In the following,

we present a more restricted subset of cuts that are both minimal and that minimize the

infinity norm. We start with the definition of a tight ray. Intuitively, a ray r is tight in

a cut if its cut coefficient cannot be decreased without generating an invalid inequality.

Definition 25. Given an inequality
∑m

i=1 πisi ≥ 1 that is valid for (C) and a ray rk,

where k ∈ {1, . . . ,m}, we say that rk is tight with respect to this inequality if, for any
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π̄k < πk, the inequality
m∑
i=1
i 6=k

πisi + π̄ksk ≥ 1

is not valid for (C).

Next, we present the precise definition of the subset of cuts we will study in this

chapter. The definition is recursive, and leads naturally to an algorithm for obtaining

these cuts. The idea is to decrease the cut coefficients of all the variables simultaneously,

until some rays become tight and their coefficients cannot be decreased any further. The

coefficients for these tight rays are then fixed, and the remaining coefficients are then

lowered simultaneously. The process repeats, until all the rays become tight.

Definition 26.

(i) The inequality
m∑
i=1

εsi ≥ 1 (4.4)

is an infinity cut (level 1) if ε ≥ 0 is the smallest number such that (4.4) is valid.

(ii) Suppose
m∑
i=1

πisi ≥ 1 (4.5)

is an infinity cut (level k), for some k ∈ {1, 2, . . .} and some π ∈ Rm
+ . Let T ⊆

{1, . . . ,m} be the set of indices i such that ri is tight with respect to (4.5), and let

N = {1, . . . ,m} \ T be the set of the remaining indices. The inequality∑
i∈T

πisi +
∑
i∈N

εsi ≥ 1 (4.6)

is an infinity cut (level k + 1) if ε ≥ 0 is the smallest number such that (4.6) is

valid.

Figure 4.1 shows the infinity cuts (levels 1, 2 and 3) for the relaxation in Example 24.

The next proposition shows the infinity cut (level m) is indeed minimal, in the sense

that no coefficient can be made individually stronger without generating an invalid cut.

Proposition 27. If
∑m

i=1 πisi ≥ 1 is an infinity cut (level m), then this inequality is

minimal.
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Proof. It can be easily proved by induction that at least k rays are tight with respect

to the infinity cut (level k), for any k ∈ {1, . . . ,m}. It follows that all the rays are tight

with respect to the infinity cut (level m), and therefore the cut is minimal. �

We end this section with the observation that, from Definition 26, it is also clear that

the infinity cut (level m) is unique for each continuous corner relaxation. This subset of

intersection cuts, therefore, is very small, which makes them attractive computationally.

4.2 Computation of infinity cuts

In this section, we present an algorithm for computing the infinity cut (level m) for

a given finite continuous multi-row relaxation. As in the previous section, we take a

geometric approach, and focus on scaling up a certain lattice-free set.

First observe that, if (4.6) is an infinity cut (level k), then it can also be written as

m∑
i=1

max{βi, ε}si ≥ 1, (4.7)

for some β1, . . . , βm ≥ 0. Indeed, one valid choice of β is βi = πi for every i ∈ T , and

βi = 0 for every i ∈ N . This form is more convenient than (4.6) since we do not need

to deal with the sets T and N ; all we need to characterize the cut are the values βi.

Similarly to the previous section we can prove that (4.7) is a valid inequality by verifying

that a certain convex set is lattice-free, as shown by the next lemma.

Lemma 28. For every ε > 0 and β1, . . . , βm ≥ 0, if the convex set

B(ε, β) = conv

(
{f} ∪

{
f +

1

max{ε, βi}
ri : i ∈ {1, . . . ,m}

})
is lattice-free, then inequality (4.7) is valid for (C).

Proof. Similar to the proof of Lemma 23. �

A brief outline of the algorithm is as follows. First, all the variables βi are set to

zero. Then, the algorithm tries to find the smallest number ε > 0 such that B(ε, β) is

lattice-free. If B(ε, β) is lattice-free for every ε > 0, then ε is set to zero. At this point,

inequality (4.7) corresponds to the infinity cut (level 1). Next, for every ray ri that has

become tight with respect to (4.7), the algorithm updates βi to ε. The process then

repeats, and the algorithm tries to find, once again, the smallest ε > 0 such that B(ε, β)

is lattice-free. The algorithm stops after m iterations, since it is guaranteed, by then,
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(a) ε ≥ 2
3 (b) 2

3 ≥ ε ≥
1
2 (c) 1

2 ≥ ε ≥
1
4

Figure 4.2: Example of B(ε, β) for different values of ε

that every ray has become tight. We show the algorithm in a small example, before

presenting its precise description.

Example 29. Consider the continuous relaxation presented in Example 24. The algo-

rithm starts by settings β to (0, 0, 0, 0, 0). Figure 4.2a shows the set B(ε, β) for values

ε = 4
3
, 4

5
, 2

3
. Note that, as we decrease ε, the set B(ε, β) grows. It is clear that, for any

ε < 2
3
, the point (1, 1) belongs to the interior of B(ε, β), therefore the desired ε for the

first iteration is 2
3
. The algorithm then sets β2 and β3 to 2

3
, and continues to decrease

ε. Figure 4.2b shows B(ε, β) for values ε = 2
3
, 4

7
, 1

2
. Note that, even as ε decreases, the

vertices corresponding to rays r2 and r3 remain fixed. Since any ε < 1
2

causes the point

(0, 1) to fall in the interior of B(ε, β), the desired ε for the second iteration is 1
2
. The

algorithm sets β1 and β5 to 1
2

and continues decreasing ε. Figure 4.2c shows B(ε, β)

for values ε = 1
2
, 1

3
, 1

4
. Since (0, 0) belongs to the interior of B(ε, β) for any ε < 1

4
, the

desired ε for the third iteration is 1
4
. The algorithm sets β4 to 1

4
. In the following iter-

ations, the set B(ε, β) is lattice-free for any choice of ε, and no new rays become tight.

The algorithm terminates then with β = (1
2
, 2

3
, 2

3
, 1

4
, 1

2
), which gives us the coefficients for

the infinity cut (level 5). �

A precise description of our method is presented in Algorithm 30. The algorithm

relies on a function Bound, which, given x ∈ Zn and β1, . . . , βm ≥ 0, either returns the

largest εx > 0 such that B(εx, β) contains x, given that this number exists, or returns

zero in case it does not. In the following, we prove that InfinityCut correctly computes

the infinity cut (level m). First, we prove technical lemma, which shows that, at the end

of each iteration of the loop in line 3, the value of the variable εk decreases.
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Algorithm 30

1: function InfinityCut
2: β0

i ← 0, for every i ∈ {1, . . . ,m}
3: for k ∈ {1, . . . ,m} do
4: εk ← 0
5: for x ∈ Zn do
6: εkx ← Bound(βk−1

1 , . . . , βk−1
m , x)

7: εk ← max{εk, εkx}
8: T k ← {i ∈ {1, . . . ,m} : ri is tight for

∑m
i=1 max{βk−1

i , εk}si ≥ 1}
9: βki ← max{βk−1

i , εk}, for every i ∈ T k
10: βki ← βk−1

i , for every i ∈ {1, . . . ,m} \ T k

11: return βm1 , . . . , β
m
m

Lemma 31. If ε1, . . . , εm are defined as in Algorithm 30, then

ε1 ≥ ε2 . . . ≥ εm.

Proof. Let k ∈ {2, . . . ,m}. Suppose, by contradiction, that εk−1 < εk. Since εk−1 ≥ 0,

we must have εk > 0. This implies that εk = εkx = Bound(βk−1
1 , . . . , βk−1

m , x), for some

x ∈ Zn. By the definition of Bound, this implies x ∈ B(εk, βk−1
1 , . . . , βk−1

m ). Next, we

prove that B(εk, βk−1
1 , . . . , βk−1

m ) = B(εk, βk−2
1 , . . . , βk−2

m ). Indeed,

B(εk, βk−1
1 , . . . , βk−1

m )

= conv

(
{f} ∪

{
f +

1

max{εk, βk−1
i }

ri
}m
i=1

)
= conv

(
{f} ∪

{
f +

1

max{εk, εk−1, βk−1
i }

ri
}
i∈Tk−1

∪
{
f +

1

max{εk, βk−2
i }

ri
}
i∈{1,...,m}\Tk−1

)

= conv

(
{f} ∪

{
f +

1

max{εk, βk−2
i }

ri
}m
i=1

)
= B(εk, βk−2

1 , . . . , βk−2
m ).

This implies that x ∈ B(εk, βk−2
1 , . . . , βk−2

m ). Therefore, if εk−1
x = Bound(βk−2

1 , . . . , βk−2
m , x),

then we must have εk−1
x ≥ εk. On the other hand, we know that εk−1 ≥ εk−1

x . A contra-

diction. �

Theorem 32. If k ∈ {1, . . . ,m} and if βk1 , . . . , β
k
m and εk are defined as in Algorithm 30,

then the inequality
m∑
i=1

max{βk−1
i , εk}si ≥ 1 (4.8)
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is the infinity cut (level k).

Proof. First, we prove that the result holds at the end of the first iteration. In this case,

equation (4.8) is given by

m∑
i=1

max{β0
i , ε

1}si =
m∑
i=1

ε1si ≥ 1.

By Lemma 28, in order to prove that this inequality is valid, it is sufficient to show

that B(ε1, β0) is lattice-free. Let x ∈ Zn be an arbitrary lattice point and let ε1
x =

Bound(β0, x). We prove that x is not in the interior of B(ε1, β0). If ε1
x = 0, then there

does not exist ε̄ > 0 such that x ∈ B(ε̄, β0). In particular, x /∈ B(ε1, β0), and we are

done. Suppose, on the other hand, that ε1
x > 0. By definition of Bound, we known that

B(ε1
x, β

0) does not contain x in its interior. Also, from the description of the algorithm,

have ε1 ≥ ε1
x. Therefore, B(ε1, β0) does not contain x in its interior either. Since the

choice of x was arbitrary, we conclude that B(ε1, β0) is lattice-free. Now we prove that

ε1 is as small as possible. If ε1 = 0, there is nothing to prove. If ε1 > 0, then, by the

description of the algorithm, there exists x ∈ Zn such that ε1 = ε1
x = Bound(β0, x). By

definition of Bound, for any ε̄ such that 0 < ε̄ < ε1, the set B(ε̄, β0) contains x in its

interior. Therefore, ε1 cannot be decreased without generating an invalid cut.

Now let k ∈ {2, . . . ,m} and suppose

m∑
i=1

max{βk−2
i , εk−1}si ≥ 1 (4.9)

is the infinity cut (level k). We prove that

m∑
i=1

max{βk−1
i , εk}si ≥ 1 (4.10)

is the infinity cut (level k + 1). By Lemma 31, εk ≥ εk+1. Consider a ray ri such that

i ∈ T k−1. By definition, βk−1
i = max{βk−2

i , εk−1}, which implies that max{βk−1
i , εk} =

max{βk−2
i , εk−1, εk} = max{βk−2

i , εk}. Suppose, on the other hand, that ri is such that

i /∈ T k−1. Since the set of tight rays only increases after each iteration, i /∈ T 1, . . . , T k−2

and we have βk−1
i = 0. Therefore, max{βk−1

i , εk} = εk. Equation (4.10) can be rewritten

as ∑
i∈Tk−1

max{βk−2
i , εk−1}si +

m∑
i=1

i/∈Tk−1

εksi ≥ 1. (4.11)
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This form matches item (ii) of Definition 26. More precisely, notice that the coefficients

corresponding to the tight rays T k−1 have been kept unchanged when going from (4.9)

to (4.11). Also, all the coefficients for the remaining rays are equal to some εk ∈ R+. It

remains to show that (4.11) is valid and that εk cannot be made any smaller. The proof

is very similar to the base case, and has been omitted. �

Before we continue, we make a small modification to Algorithm 30 in order to make it

finite. Note that the algorithm currently never terminates because of the loop in Line 5.

If εk is initialized to a very small but strictly positive constant η, instead of zero, then

this loop can be rewritten as

for x ∈ Zn ∩B(εk, βk−1)

Since B(εk, βk−1) is bounded, there are a finite number of lattice points contained in it,

and the loop now terminates in finite time. Another advantage is that, whenever εk gets

updated inside of the loop, the set B(εk, βk−1) shrinks, causing the loop to terminate

earlier. We note that this modification does change the output of the algorithm, and

causes the algorithm to produce a slightly weaker cut whenever the infinity cut for the

relaxation turns out to be a split. If the constant η is small enough, however, the

practical impact is likely negligible. In our experiments, this constant was set to 10−3.

Next, we present an algorithm for evaluating the function Bound. With our mod-

ification, this function now behaves as follows. Given x ∈ Zn and β1, . . . , β
m ≥ 0, if

there exists ε ≥ η such that B(ε, β) contains x, the function returns the largest of such

ε. If no such ε exists, the function returns η. An outline of the algorithm is as follows.

We start by setting ε = η and verifying whether B(β, ε) contains x in its interior. If

so, there must exist a subset of linearly independent rays ri1 , . . . , ris , where s ≤ n, such

that x belongs to the relative interior of the set

S(ri1 , . . . , ris , βi1 , . . . , βis , ε) = conv

(
{f} ∪

{
f +

1

max{ε, βij}
rij : j ∈ {1, . . . , s}

})
.

Note that this set was obtained from B(β, ε) by dropping some of the rays ri, and

therefore has a simpler structure. The algorithm then computes ε such that x belongs

to the boundary of this simplified set, which can be done easily. Next, the algorithm

verifies whether x still belongs to the interior of the original set B(β, ε), and, if so, the

process repeats. The algorithm stops when x is no longer in the interior of B(ε, β). We

show the execution of this algorithm in a small example.

Example 33. Consider, once again, the continuous relaxation presented in Example 24.
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Figure 4.3: Examples for Bound

Let β = (0, 0, 0, 0, 0), x = (1, 1) and suppose we want to compute Bound(β, x). The al-

gorithm starts by setting ε to some very small η. The set B(ε, β) is shown in Figure 4.3a.

Clearly, x belongs to the interior of B(ε, β). Notice that x also belongs to the relative

interior of S(r1, r3, β1, β3, ε) for any ε < 1
2
. The algorithm then sets ε to 1

2
and verifies

that x still belongs to the interior of B(ε, β), as shown in Figure 4.3b. Furthermore, x

belongs to the interior of S(r2, r3, β2, β3, ε) for any ε < 2
3
. After setting ε to 2

3
, it can be

verified that x no longer belongs to the interior of B(ε, β), and the algorithm stops. �

A precise description of Bound is given in Algorithm 34. In order to find the

desired subset of linearly independent rays ri1 , . . . , ris , or to prove that no such sub-

set exists, Bound calls the function FindViolatedCone, which is described pre-

cisely in Algorithm 35, and in order to find ε such that x belongs to the boundary

of S(ri1 , . . . , ris , βi1 , . . . , βis , ε), Bound calls the function ConeBound, which is de-

scribed precisely in Algorithm 36. In the following, we prove that these algorithms

indeed work as intended. We start with FindViolatedCone.

Proposition 37. Let ε > 0. If FindViolatedCone returns a non-empty set {i1, . . . , is} ⊆
{1, . . . ,m}, then

(i) ri1 , . . . , ris are linearly independent

(ii) x belongs to the relative interior of S(ri1 , . . . , ris , βi1 , . . . , βis , ε)

If FindViolatedCone returns ∅, then no subset {i1, . . . , is} ⊆ {1, . . . ,m} satisfies (i)

and (ii).
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Algorithm 34

1: function Bound(β1, . . . , βm, x)
2: ε← η
3: loop
4: Q← FindViolatedCone(β1, . . . , βm, ε, x)
5: if Q = ∅ then
6: break
7: else
8: Let Q = {i1, . . . , is}, where βi1 ≤ . . . ≤ βis
9: ε← max{ε,ConeBound(ri1 , . . . , ris , βi1 , . . . , βis , x)}

return ε

Algorithm 35

1: function FindViolatedCone(β1, . . . , βm, ε, x)
2: Let λ∗ be an optimal basic solution for

minimize
m∑
j=1

λj

subject to x = f +
m∑
j=1

λj
max{ε, βj}

rj

λr ≥ 0

3: if
∑m

j=1 λ
∗
j ≥ 1 then return ∅

4: else return {i ∈ {1, . . . ,m} : λ∗i > 0}

Algorithm 36

1: function ConeBound(q1, . . . , qs, β1, . . . , βs, x)
2: Let λ ∈ Rs such that x = f +

∑s
i=1 λiq

i

3: for t = 0 to s− 1 do

4: Let εt ←
1−

∑t
i=1 λiβi∑s

i=t+1 λi
5: if εt > βt+1 then return εt

return 0
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Proof. Suppose FindViolatedCone returns a non-empty subset {i1, . . . , is} ⊆ {1, . . . ,m},
and let λ∗ be defined as in the algorithm. Property (i) follows immediately from the

fact that λ∗ is a basic feasible solution. Now we prove that x belongs to the relative

interior of S := S(ri1 , . . . , ris , βi1 , . . . , βis , ε). If we denote by vj the point f + 1
max{βj ,ε}r

j,

for j ∈ {1, . . . ,m}, then the vertices of S are f, vi1 , . . . , vis . It suffices to prove that x

is a strict convex combination of these vertices. Recall that
∑m

j=1 λ
∗
j < 1. Since each

λ∗j > 0, this also implies λ∗j < 1, for every j ∈ {1, . . . ,m}. Furthermore, if we define

λ∗0 = 1−
∑m

j=1 λ
∗
j , then 0 > λ∗0 > 1. We have

x = f +
m∑
j=1

λ∗j
max{ε, βj}

rj

= f +
s∑
j=1

λ∗ij
(
vij − f

)
= λ∗0f + λ∗i1v

i1 + . . .+ λ∗isv
is

We conclude that (ii) is satisfied.

Now suppose FindViolatedCone returns the empty set. In this case,
∑m

j=1 λ
∗
j ≥

1. Also suppose, by contradiction, that there exists a non-empty set {i1, . . . , is} ⊆
{1, . . . ,m} satisfying (i) and (ii). Let the points vj be as defined previously. We know

there exist 0 > λ0, λi1 , . . . , λis > 1 such thatx = λ0f + λi1v
i1 + . . .+ λisv

is

λ0 + λi1 + . . .+ λis = 1

Let λj = 0 for every j ∈ {1, . . . ,m} \ {i1, . . . , is}. It is not hard to verify that

x = f +
m∑
j=1

λj
max{ε, βj}

rj.

Therefore, λ1, . . . , λm is a feasible solution to the LP in the algorithm. Furthermore,∑m
j=1 λj = 1 − λ0 < 1 ≤

∑m
j=1 λ

∗
j . This implies that λ∗ is not an optimal solution, a

contradiction. We conclude that no subset {i1, . . . , is} ⊆ {1, . . . ,m} satisfying (i) and

(ii) exists. �

Next, we focus on the function ConeBound. First, we present a technical lemma

which justifies the formula for εt that appears in the algorithm, and then a proposition

which proves that ConeBound finds the correct answer.
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Figure 4.4: Illustration for ConeBound

Lemma 38. Let x ∈ Zn, let β1, . . . , βs ∈ R such that β1 ≥ . . . ≥ βs ≥ 0, let

q1, . . . , qs ∈ Rn be linearly independent vectors such that x belongs to the relative in-

terior of f + cone(q1, . . . , qs), and let λ1, . . . , λs > 0 such that x = f +
∑s

i=1 λiq
i. Let

t ∈ {0, . . . , s− 1}, and define

εt =
1−

∑t
i=1 λiβi∑s

i=t+1 λi
.

If β1, . . . , βt > 0 and εt > 0, then εt is the largest ε ∈ R such that

x ∈ conv

(
{f} ∪

{
f +

1

βi
qi
}t
i=1

∪
{
f +

1

ε
qi
}s
i=t+1

)
=: St(ε)

Proof. Let vi = f + 1
βi
qi for i ∈ {1, . . . , t} and vi = f + 1

εt
qi for i ∈ {t+ 1, . . . , s}. We

prove that x is a convex combination of v1, . . . , vs. This implies that x ∈ St(εt), and it

is not hard to see that, for any ε > εt, we have x 6∈ St(ε). To prove this claim, let

γi =

λiβi for i ∈ {1, . . . , t}

λiεt for i ∈ {t+ 1, . . . , s}

By hypothesis, we have λ1, . . . , λs > 0 and β1, . . . , βt, εt > 0. This implies that γ1, . . . , γt >

0. Furthermore, the sum of γ1, . . . , γt equals one, since

s∑
i=1

γi =
t∑
i=1

λiβi + εt

(
s∑

i=t+1

λi

)
=

t∑
i=1

λiβi + 1−
t∑
i=1

λiβi = 1.

It only remains to prove that x =
∑s

i=1 γiv
i. We have:

s∑
i=1

γiv
i =

s∑
i=1

γif +
t∑
i=1

λiβi
1

βi
qi +

s∑
i=t+1

λiεt
1

εt
qi = f +

s∑
i=1

λiq
i.
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Proposition 39. Let f, x, β1, . . . , βs and q1, . . . , qs be defined as in Lemma 38. If there

exists ε > 0 such that x belongs to the interior of S(q1, . . . , qs, β1, . . . , βs, ε) := S(ε), then

ConeBound returns the largest ε ∈ R such that x ∈ S(ε). Otherwise, ConeBound

returns zero.

Proof. Suppose there exists ε̃ > 0 such that x belongs to the interior of S(ε̃). First, we

prove that there exists ε∗ > βs such that x ∈ S(ε∗). If ε̃ > βs, there is nothing to prove,

so suppose ε̃ ≤ βs. Since βs ≤ . . . ≤ β1, this implies S(ε̃) = S(βs). Therefore, x belongs

to the interior of S(βs). It is not hard to see that, for a very small θ > 0, we still have

x ∈ S(βs + θ). Therefore, there exists ε∗ > βs such that x ∈ S(βs + θ). Furthermore,

we may assume that ε∗ is the maximum value satisfying this property. Indeed, if such

maximum does not exist, then x ∈ S(ε) for every ε > ε∗, which implies f = x, a

contradiction. Next, we prove that ConeBound returns ε∗. Let β0 =∞. There exists

k ∈ {0, . . . , s− 1} such that βk+1 < ε∗ ≤ βk. By Lemma 38, we know that ε∗ = εk.

We prove that ConeBound returns εk. Since εk = ε∗ > βk+1, it is sufficient to show

that the loop does not finish before considering εk. That is, that ConeBound does not

return ε0, . . . , εk−1. Suppose, by contradiction, that ConeBound returns εl, for some

l ∈ {0, . . . , k − 1}. Then εl > βl+1 ≥ βk ≥ ε∗. Furthermore, x ∈ S(εl), contradicting the

maximality of ε∗. We conclude that the algorithm returns ε∗.

Now, suppose that ConeBound returns a non-zero value. Clearly, the returned

value must be εk, for some k ∈ {0, . . . , s− 1}. Furthermore, x ∈ S(εk) and εk > βk+1 ≥
βs. Let ε̃ = εk+βs

2
. It is not hard to see that ε̃ > 0 and that x belongs to the interior of

S(ε̃). We conclude that there exists ε > 0 such that x belongs to the interior of S(ε).

�

We end this section with a proof of correctness for the function Bound.

Proposition 40. Let x ∈ Zn, let β1, . . . , βm ≥ 0 and let η > 0. If there exists ε ≥ η

such that x belongs to the interior of B(β1, . . . , βm, ε) =: B(ε), then Bound returns the

largest ε ≥ η such that x ∈ B(ε). Otherwise, Bound returns η.

Proof. First, suppose there does not exist ε ≥ η such that x belongs to the interior of

B(ε). Then, clearly, x does not belong to the interior of B(η) and, by Proposition 37,

the function FindViolatedCone returns the empty set. The loop then breaks during

the first iteration. Therefore, Bound returns η.

Now suppose there exists ε ≥ η such that x belongs to the interior of B(ε). Since

B(ε) ⊆ B(η), then x also belongs to the interior of B(η). This implies that the value ε∗
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returned by Bound equals the value returned by ConeBound, for some subset of rays

ri1 , . . . , ris . By Proposition 39, we have x ∈ B(ε∗). Now suppose, by contradiction, that

there exists ε̃ > ε∗ such that x ∈ B(ε̃). This implies that x belongs to the interior of

B(ε∗), a contradiction. We conclude that ε∗ is the largest ε ≥ η such that x ∈ B(ε). �

4.3 Computational experiments

In order to evaluate the strength of infinity cuts, we implemented a cut generator and

tested it with problems from MIPLIB. Our main performance indicator was the inte-

grality gap closed at the root node of the branch-and-bound tree. We compared our cuts

against Gomory Mixed-Integer (GMI) cuts, and also against an exact separator for con-

tinuous multi-row intersection cuts implemented by Louveaux, Poirrier and Salvagnin

[60, 61]. Our main goal was to determine how close to the maximum theoretical gap

closure would infinity cuts bring us. Another side goal was to evaluate the efficiency our

cut generator.

The cut generator was implemented in C and compiled with GNU GCC 5.4.0. The

generator makes use of IBM ILOG CPLEX 12.4.0 as a LP/MIP solver. The complete

source code has been made available online [67]. We conducted our experiments on an

Intel Xeon E5-2630v2 2.6 GhZ with 64GB of memory, with a time limit of 15 CPU

minutes.

4.3.1 Generating infinity cuts from the tableau

When generating a multi-row intersection cut from the simplex tableau, the first step

is to select a suitable combination of tableau rows that will be used to derive the cut.

Suppose that the simplex tableau is given by

xi +
∑
j∈N

āijxj = bi, i ∈ B

where xi, for i ∈ B, are the basic variables, and xj, for j ∈ N , are the non-basic variables.

In principle, any subset of tableau rows I ⊆ B can be used, as long as two conditions

are satisfied: first, only rows corresponding to integral basic variables are selected; and

second, at least one row with a fractional right-hand side is included in the subset. In

practice, however, the number of subsets satisfying these two conditions is excessively

large for all but very small instances. Our cut generator, therefore, filtered down the

list of row subsets even further, as described next.
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As a first step, the rows of the simplex tableau were sorted according to the frac-

tionality of their right-hand side. More specifically, the rows were sorted increasingly

according to
∣∣∣b̂i − 1

2

∣∣∣, where b̂i is the fractional part of bi. In this way, rows having

right-hand sides closer to 1
2

received higher priority, while rows having right-sides closer

to 0 or 1 were given lower priority. Then, only 300 tableau rows with the most fractional

right-hand sides were kept, while the remaining rows were discarded.

Next, for each pair of remaining tableau rows, we computed how similar was their

support. More specifically, given two tableau rows xp +
∑

j∈N āpjxj = bp and xq +∑
j∈N āqjxj = bq, their affinity is given by the formula

Affinity(p, q) =
2× |{j : āpj 6= 0 and āqj 6= 0}|
|{j : āpj 6= 0}|+ |{j : āqj 6= 0}|.

Note that, for every pair of tableau rows, this formula returns one if āp and āq have

exactly the same support and zero if their supports are completely disjoint. This heuris-

tic was also used by Louveaux, Poirrier and Salvagnin [61]. Pairs of tableau rows with

affinity less than a certain threshold were considered incompatible. The generator de-

rived one infinity cut for each subset of tableau rows containing only pairwise compatible

rows.

After selecting a subset I = {i1, . . . , ik} ⊆ B to generate the cut, another issue was to

decide what set of rays to use when generating the infinity cut. On one hand, we wanted

the set of rays to be as close as possible to the original columns of the simplex tableau.

On the other hand, the running time of the algorithm described in the previous section

is highly sensitive on the number of rays, and, for instances having a large number of

variables, it proved to be too slow to be useful in practice. Our separator, therefore,

performed the following heuristic to reduce the number of rays considered. For each

non-basic variable xj, a ray rj = (āij : i ∈ B) was created. Rays having zeros in all

components were discarded. Then, for each pair of rays that were very similar to each

other, only one was kept. More specifically, for every pair of rays r1, r2, we computed

‖r1 − r2‖, and, whenever this value was smaller than a certain threshold, one of these

rays was discarded. The threshold was initially set to infinity and then slowly decreased

until at most 100 rays were selected.

4.3.2 Cut generating procedure

Our cut generator performed the following steps. First, the linear relaxation of the prob-

lem was solved, and a certain basic solution with value zLP with value zLP was obtained.
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The optimal simplex tableau was stored. Although this relaxation was later strength-

ened and solved again, only this first optimal simplex tableau was used to generated all

subsequent cutting planes, hence we only obtain rank-1 cuts. Next, one GMI cut was

generated from each suitable tableau row, and added to the relaxation. The relaxation

was solved again, and a certain solution with value zGMI was found. Then, one infinity

cut was generated at a time, for each suitable subset of tableau rows, as described in the

previous subsection. If the infinity cut did not cut the current basic optimal solution,

the cut was discarded. Otherwise, the infinity cut was added to the relaxation, the

relaxation was solved once again, and the current basic solution was updated. At the

end of the procedure, a new solution with value zINF was obtained. Finally, we also ran,

independently from our generator, the exact separator for continuous multi-row cuts,

and obtained a solution with value zEXACT . Since different bases cause slightly different

results, we were careful to use the same basis for all cut generators.

The set of instances was the MIPLIB 3.0, which contains 65 instances coming from

real-world applications. We chose this version of the MIPLIB so that the exact separator

could produce more reliable bounds. Out of the 65 instances, we eliminated those that

were infeasible, that had no known optimal solution, or whose LP relaxation had the

same objective value as the original problem. Three instances were also eliminated

because of their size. For each of the remaining 56 instances, we computed:

• G-GMI, the gap closed by the inclusion of GMI cuts:

G-GMI =
zGMI − zLP
zOPT − zLP

,

• G-INF, the gap closed by the inclusion of GMI cuts, in addition to the infinity

cuts:

G-INF =
zINF − zLP
zOPT − zLP

,

• G-EXACT, the gap closed by using the exact separator for continuous multi-row

cuts:

G-EXACT =
zEXACT − zLP
zOPT − zLP

,

• REL, a relative measure of strength, in terms of gap closure, when compared to

the exact separator, given precisely by:

REL =
zINF − zGMI

zEXACT − zGMI

.
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• T-TIME, the total CPU running time spent by the infinity cut generator (min:sec),

• C-TIME, the CPU running time that the infinity cut generator, on average, took

to generate a single cut, in milliseconds,

• N-CUTS, the number of infinity cuts added to the relaxation.

4.3.3 Results and discussion

Table 4.1 shows the computational results for infinity cuts generated from two rows of

the simplex tableau. We show both the strength of non-lifted infinity cuts, where no

attempt was made to strengthen the coefficients of the non-basic variables, and for lifted

infinity cuts, where the coefficients for the integral non-basic variables were strengthened

using the trivial lifting procedure described in Section 2.3.

For the set of 56 instances processed, the average gap closed by GMI cuts, by non-

lifted infinity cuts, by lifted infinity cuts, and by the exact separator was, respectively,

29.0%, 31.3%, 31.8% and 33.9%. Therefore, in terms of gap closure, non-lifted infinity

cuts provided, on average, 47.8% of the benefits of adding the entire class of continuous

2-row intersection cuts, while lifted infinity cuts provided, on average 57.8%.

The total CPU running time necessary to generate the non-lifted infinity cuts was on

average very low, at 20 seconds, while the median was below 1 second. After lifting, the

average running time increased to 2 minutes and 27 seconds. In comparison, the average

running time for the exact separator was 1 hour and 26 minutes, with many instances

reaching the time limit of 4 hours. Because of this time limit, the infinity cut generator

was able to obtain a better gap closure than the exact separator in several instances.

The infinity cut generator added, on average, 5.6 non-lifted cuts and 7.4 lifted cuts per

instance. In comparison, the exact separator added, on average 42 cuts per instance.

For 21 out of the 56 instances processed, the exact separator was not able to improve

upon the gap closed by the GMI cuts, while the non-lifted infinity cuts were not able to

improve upon the gap for 32 instances. We note however that, for these instances, the

total running time to generate these cuts was only 22 seconds and the number of cuts

added was only 0.3, on average. Therefore, even for instances where non-lifted infinity

cuts were not helpful, they would also probably not significantly affect the total running

time of the branch-and-bound algorithm. Lifted infinity cuts were not able to improve

the gap for 25 instances. The total running time for these instances was 3 minutes and

26 seconds, while the number of added cuts was 0.5, on average.

We also ran computational experiments for lifted and non-lifted infinity cuts from 3

rows of the simplex tableau. Table 4.2 shows these results. Here, we compare against
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the exact separator for continuous 3-row intersection cuts. For the set of 56 instances

processed, the average gap closed by GMI, by non-lifted infinity cuts, by lifted infinity

cuts, and by the exact separator was, respectively, 29.0%, 32.2%, 32.7% and 36.1%. Non-

lifted infinity cuts provided, on average, 44.9% of the benefits of the exact separator,

while lifted infinity cuts provided 52.2%. This suggests that the relative strength of

infinity cuts is preserved for rows with more relaxations.

The total CPU running time per instance was 3 minutes and 52 seconds for the

non-lifted infinity cuts, and 6 minutes and 6 seconds for the lifted ones, on average. In

comparison, the exact separator spent 2 hours and 27 minutes, on average. The infinity

cut generator added, on average, 7.8 non-lifted cuts and 10.0 lifted cuts — numbers

considerably lower than the 103 cuts added on average by the exact separator.

For illustration purposes, we finish this chapter with Figure 4.5, which shows some

of the lattice-free sets produced by the infinity cut generator for a particular instance.

The generator mostly produced sets that are approximately quadrilaterals, and also a

few truncated triangles. While we can verify that all of these cuts are minimal, we

can observe that the corresponding lattice-free sets are seldom maximal. While this

has no impact on the strength of non-lifted infinity cuts, it does negatively impact the

effectiveness of the lifting procedure.
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Figure 4.5: Infinity cuts generated from instance gen
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Figure 4.5: Infinity cuts generated from instance gen (continued)
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Figure 4.5: Infinity cuts generated from instance gen (continued)
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Chapter 5

Intersection Cuts for Single-Row
Relaxations

In the previous chapters, we used the framework of intersection cuts and trivial lifting to

produce valid inequalities for relaxations of the simplex tableau containing two or more

rows. These techniques, however, can also be used to produce strong inequalities for

single-row relaxations. In this chapter, we revisit the single-row mixed-integer relaxation

of the simplex tableau, and we use the trivial lifting approach to produce inequalities

that are not dominated by Gomory Mixed-Integer (GMI) cuts.

Consider the mixed-integer single-row relaxation of the simplex tableau, given by

x = φ+
m∑
j=1

ωjsj +

p∑
j=1

ρjzj

x ∈ Z

s ∈ Rm
+

z ∈ Zp+

(M1)

where φ ∈ Q\Z and ρ1, . . . , ρm, ω1, . . . , ωp ∈ Q\{0}. We use Greek letters here, instead

of the usual notation, to stress the fact these variables are scalars. Although, in previous

chapters, we used the trivial lifting approach on relaxations with two or more rows, this

approach can also be applied here. Indeed, when applied to (M1), this approach yields

Gomory Mixed-Integer cuts, a very important class of single-row cuts that is widely

used in practice, as we demonstrate next. As we recall, the first step obtain a strong

inequality of (M1) by the trivial lifting approach, is to construct a maximal lattice-free

B ⊆ R containing φ in its interior. In this case, there is only one choice for B, namely

B = {x ∈ R : bφc ≤ x ≤ dφe}.
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The gauge function ψ of B − φ, and that the trivial lifting π of ψ, are given by

ψ(ω) = max

{
−ω
φ̂
,

ω

1− φ̂

}
, π(ρ) = min

{
ρ− bρc
1− φ̂

,
1 + bρc − ρ

φ̂

}
,

respectively, where φ̂ is the fractional part of φ. Plugging these functions into

m∑
j=1

ψ(ωj)sj +

p∑
j=1

π(ρj)zj ≥ 1

we obtain a valid inequality for (M1). It can be verified that this inequality is precisely

the GMI cut for this relaxation. This fact was already observed by Dey and Wolsey [40],

and it was the main motivation for the introduction of the lifting approach. Since it

yields such an important class of inequalities for single-row relaxations, the authors

reasoned that this approach had the potential to generate an equally important class of

cuts for relaxations with two or more rows.

Despite their usefulness, we recall that GMI cuts are not the only inequalities that

induce facets of the convex hull of (M1). Since the lifting approach starts by first dis-

carding the integral non-basic variables z, the only inequalities obtained in this way are

those where the continuous non-basic variables receive the strongest possible coefficients.

Many other classes of single-row cuts described in the literature, including, for example,

two-step MIR cuts [33] and knapsack cuts [44], are not dominated by GMI cuts. What

these inequalities have in common is that they exploit the integrality of the non-basic

variables from the beginning.

In this chapter, we revisit the single-row mixed-integer relaxation (M1), with the

goal of generating additional valid inequalities for (M1); in particular, we are interested

in cuts that are not dominated by GMI cuts. Although single-row relaxations have been

extensively studied in the literature, the novelty in our approach is that we use the

framework of multi-row intersection cuts and trivial lifting to derive our cuts. By doing

so, we obtain a geometric interpretation of our inequalities, and of other inequalities in

the literature, such as two-step MIR cuts. Moreover, as is central in this thesis, the tools

we develop are particularly well-suited for a practical implementation, and we present

computational results using our cuts on real-world instances.

The inequalities we consider are obtained by preserving the integrality of a single

non-basic variable. More specifically, we first rewrite (M1) as a mixed-integer two-row
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relaxation, given by(
x1

x2

)
=

(
φ

0

)
+

m∑
j=1

(
ωj

0

)
sj +

(
ρ1

1

)
z1 +

p∑
j=2

(
ρj

0

)
zj

x ∈ Z2

s ∈ Rm
+ , z1 ∈ R+

z2, . . . , zp ∈ Z+

(M2)

Note that (M2) was obtained from (M1) by adding a new variable x2 ∈ Z and a new row

x2 = z1. In this model, the integrality of the non-basic variable z1 can be discarded, since

it is already implied by the integrality of the basic variable x2. The idea of transferring

complex constraints on the non-basic variables to the basic variables by adding rows was

first suggested by Conforti, Cornuéjols and Zambelli [28]. In order to obtain a strong

valid inequality for (M2), we apply the trivial lifting approach. First, we fix the variables

z2, . . . , zp to zero, to obtain the continuous two-row relaxation(
x1

x2

)
=

(
φ

0

)
+

m∑
j=1

(
ωj

0

)
sj +

(
ρ1

1

)
z1

x ∈ Z2

s ∈ Rm
+ , z1 ∈ R+

(C2)

Then, we find a maximal lattice-free set in R2 containing
(
φ
0

)
in its interior, which will

give us the cut coefficients for the variables s1, . . . , sm, z1. Finally we perform the trivial

lifting, in order to find the cut coefficients for the variables z2, . . . , zp.

As in the previous chapters, in order to generate these inequalities in practice, two

questions must be answered. First, how to choose the lattice-free sets that will generate

a valid inequality for (C2); and second, once this valid inequality is generated, how to

perform the trivial lifting. For the second question, the results from Chapter 3 can be

used, since this is a continuous two-row relaxation. In order to answer the first question,

we study, in Section 5.1, the facial structure of the convex hull of (C2). Exploiting

the fact that this two-row relaxation has a very special structure, we are able to find a

precise description of the lattice-free sets that induce facets of its convex hull, and in

Section 5.2, we present a geometric algorithm to enumerate them. This algorithm also

leads to a natural upper bound on the split rank of (C2), which we prove in Section 5.3.

Finally, in Section 5.4, we run computational experiments to compare the strength of

the cuts developed here against GMI cuts alone. Our results indicate that, for some
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instances, we close significantly more gap than GMI with our single-row cuts.

5.1 Basic results

In this section, we study the structure of the convex hull of (C2). Our goal is to obtain

the complete list of lattice-free sets that induce a facet-defining inequality for this set.

First, observe that (C2) can be simplified by aggregating the continuous non-basic

variables sj according to the sign of ωj. Indeed, the structure of (C2) is essentially the

same as of the set

PI =

{
(x, s) ∈ S × R3

+ :

(
x1

x2

)
=

(
φ

0

)
+

(
ρ

1

)
s1 +

(
1

0

)
s2 +

(
−1

0

)
s3

}
,

where φ ∈ Q \ Z, ρ ∈ Q \ {0} and where we let S := (Z × Z+). Note that we use

S = (Z × Z+) to emphasize that x2 is non-negative, although S = Z2 would yield the

same set since x2 = s1 and s1 ≥ 0. It can also be shown that PI is closely related to

the set of solutions of a mixed-integer knapsack problem having two integral variables

and one continuous variable, which has been studied before. Hirschberg and Wong [54]

developed a polynomial-time algorithm to optimize over pure integer knapsack problems

with two variables. Agra and Constantino [1, 2] provided a complete characterization

of its convex hull, and a polynomial-time method exploiting the approach in [54] to

enumerate its facet-defining inequalities. Similar results are also due to Atamtürk and

Rajan [8]. The particularity of our approach is that we use the framework of multi-row

intersection cuts [12] to derive inequalities for conv(PI).

Let f =
(
φ
0

)
, r1 := ( ρ1 ), r2 := ( 1

0 ), r3 := ( −1
0 ) and R := [r1|r2|r3], i.e.,

PI =
{

(x, s) ∈ S × R3
+ : x = f +Rs

}
,

Our definition of conv(PI) is a special case of the set with the same name in [5], and the

following properties carry over from [5]:

Proposition 41. [5]

(i) The dimension of conv(PI) is three.

(ii) The extreme rays of conv(PI) are (ρ, 1, 1, 0, 0), (1, 0, 0, 1, 0) and (−1, 0, 0, 0, 1).

Closely related to the structure of conv(PI) are the two knapsack sets

Kj = conv
(
Z2 ∩

(
f + cone(r1, rj)

))
for j ∈ {2, 3},
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f

r1

r2r3

K3

K2

(a) Knapsack sets K2 and K3.

f

r1

r2r3

K3

K2

(b) Example of facet-defining wedge.

Figure 5.1: Knapsack sets and facet-defining S-free sets.

illustrated in Figure 5.1a. For the vertices of conv(PI), we can refine the characterization

from [5]:

Proposition 42. A point (x̄, s̄) ∈ PI is a vertex of conv(PI) if and only if s̄ = s̄1e1+s̄jej

for some j ∈ {2, 3} and x̄ is a vertex of conv(Kj).

Proof. (⇒) Assume that (x̄, s̄) is a vertex of conv(PI). Then, x̄ is integer and s̄ is a

vertex of PI ∩ {(x, s) : x = x̄}, hence a basic feasible solution to the system {s ∈ R3
+ :

Rs = x̄ − f}. Thus, s̄ has at most two nonzero components. Furthermore, since the

submatrix [r2|r3] is not invertible, either s2 or s3 is nonbasic, hence zero. Therefore,

s̄ = s̄1e1 + s̄jej for some j ∈ {2, 3}. Since x̄ is integer, this implies that x̄ ∈ Kj. We

next show that x̄ is a vertex of conv(Kj). In the following, we assume j = 2, since the

other case is similar. Suppose, by contradiction, that x̄ is not a vertex of conv(K2).

Then, there must exist x1, . . . , xk ∈ K2 ∩ Z2 distinct from x̄ and λ ∈ Rk
+ such that

x̄ =
∑k

i=1 λix
i and

∑k
i=1 λi = 1. Let M = [r1|r2]. Note that since lin(r1) 6= lin(r2), M

is invertible. For each i ∈ {1, . . . , k}, let si ∈ R3
+ be such that si = si1e1 + si2e2 and(

si1
si2

)
= M−1(xi − f).

For every i ∈ {1, . . . , k}, si1, si2 ≥ 0 because xi ∈ K2, so (xi, si) ∈ PI . Furthermore, by

linearity, s̄ =
∑k

i=1 λis
i, thus (x̄, s̄) =

∑k
i=1 λi(x

i, si). This contradicts the assumption

that (x̄, s̄) is a vertex of conv(PI).

(⇐) Let (x̄, s̄) ∈ PI be such that s̄ = s̄1e1 + s̄jej for some j ∈ {2, 3} and x̄ is a vertex

of conv(Kj). In the following, we assume j = 2, since the other case is similar. We
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prove that (x̄, s̄) is a vertex of conv(PI). Suppose, by contradiction, that this is not the

case. Then, there must exist k points (x1, s1), . . . , (xk, sk) ∈ PI distinct from (x̄, s̄) and

λ ∈ Rk
+ such that (x̄, s̄) =

∑k
i=1 λi(x

i, si) and
∑k

i=1 λi = 1. Since s̄3 = 0 and λ ≥ 0, we

have si3 = 0 for all i. Therefore xi ∈ K2 for all i and these points are all distinct from x̄.

We can construct x̄ as a convex combination of k points x1, . . . , xk ∈ K2 distinct from

x̄. This contradicts the assumption that x̄ is a vertex of conv(K2). �

We now look at the facet-defining inequalities for conv(PI).

Proposition 43. [5] The facet-defining inequalities of conv(PI) take the form

(i) sj ≥ 0 for j ∈ {1, 2, 3},

(ii) αT s ≥ 1 for some α ≥ 0.

Note that inequalities of the form (i) in Proposition 43, i.e. sj ≥ 0 for some j ∈
{1, 2, 3}, are called trivial, while those of the form (ii) are called nontrivial. For the

nontrivial inequalities, we have the following further characterization.

Proposition 44. Every nontrivial facet-defining inequality αT s ≥ 1 of conv(PI) satisfies

α2 > 0 and α3 > 0. If α1 = 0, then there are no integer points on the ray f + cone(r1),

and there is only one facet-defining inequality of that form.

Proof. Let z2 := (dφe , 0, 0, dφe − φ, 0) and z3 := (bφc , 0, 0, 0, φ− bφc). Since z2 and z3

belong to PI , we must have α2 > 0 and α3 > 0, respectively. Suppose f + λr1 = x̄ ∈ Z2

for some λ ∈ R+. Since φ /∈ Z we have λ > 0. Then (x̄1, x̄2, λ, 0, 0) ∈ PI , and therefore

α1 > 0. It follows that if α1 = 0, then f +λr1 = x̄ ∈ Z2 does not exist. Finally, we show

uniqueness for a facet-defining inequality with α1 = 0. Suppose that α2s2 + α3s3 ≥ 1

and α′2s2 + α′3s3 ≥ 1 are facet-defining for conv(PI). Consider the vertices of conv(PI)

that are tight on α2s2 + α3s3 ≥ 1. By Proposition 42, they all have sh = 0 for some

h ∈ {2, 3}. However, the value of h is not the same for all of them, otherwise we could

set αh = 0 and the resulting inequality would cut off zh. Let (x̄, s̄) be one such vertex

and let {j} := {1, 2} \ {h}. Since α′2s2 + α′3s3 ≥ 1 is valid, α′j ≥ αj. By applying the

process to all vertices, then repeating for those that are tight on α′2s2 + α′3s3 ≥ 1, we

obtain α′2 = α2 and α′3 = α3. �

Our motivation for studying a model of the form of PI is that such model is an ideal

setting for computing and using intersection cuts [12]. Specifically, every nontrivial valid

inequality for PI is an intersection cut from some S-free set in R2 [38]. A convex set

B ⊆ Rm is S-free if its interior contains f but no point of S. The set is maximal if it is not
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properly contained into any other S-free set. Maximal sets are the only ones that interest

us, since any non-dominated inequality can be obtained from such sets. Note that Basu,

Conforti, Cornuéjols and Zambelli [21] proved that every maximal S-free set is polyhe-

dral, and given a polyhedral S-free set B :=
{
x ∈ Rm : gTi (x− f) ≤ 1, i = 1, . . . , k

}
,

the intersection cut coefficient for sj is given by ψB(rj) = maxi=1,...,k g
T
i r

j [38]. In the

context of conv(PI), x ∈ S = Z × Z+ and s ∈ R3
+. Proposition 45 shows that in this

case, we may restrict our attention to S-free sets B with two faces, i.e. k = 2. An

analogous result was obtained in [28] for an infinite relaxation of PI .

Proposition 45. If αTx ≥ 1 is a nontrivial valid inequality for PI , then there exists an

S-free set

B =
{
x ∈ R2 : gT1 (x− f) ≤ 1, gT2 (x− f) ≤ 1

}
such that αTx ≥ 1 is the intersection cut computed from B.

Proposition 45 has a very simple justification: Only the intersections (if any) of the

facets of B with the line lin(rj) affect the intersection cut coefficient αj. Therefore, for

a given cut α ∈ R3
+, and one can easily construct a wedge or a split in R2 that provides

the three desired intersections. It implies that all facet-defining inequalities for conv(PI)

can be obtained from maximal S-free splits unbounded along the line f + lin(r1) and

maximal S-free wedges with vertex on that same line. As this reasoning relies on a

geometric intuition for intersection cuts, we also provide a formal proof.

Proof of Proposition 45. The proof is constructive. Let αTx ≥ 1 be a nontrivial valid

inequality for PI . By Proposition 43, α ≥ 0, and by Proposition 44, α2, α3 > 0. We let

g1 := (α2, α1 − ρα2) and g2 := (−α3, α1 + ρα3). It is straightforward to verify that B

then yields the appropriate intersection cut coefficients. Suppose that B is not S-free.

Then, there exists x̄ ∈ S such that gT1 (x− f) < 1 and gT2 (x− f) < 1. We construct

s̄ such that (x̄, s̄) ∈ PI . By substituting x − f = Rs in the two above inequalities, we

obtain α1s̄1 + s̄2α2− s̄3α2 < 1 and α1s̄1− s̄2α3 + s̄3α3 < 1, respectively. We can assume

without loss of generality that either s̄2 = 0 or s̄3 = 0. In each case, one of the latter

inequalities yields αT s̄ < 1, which contradicts the validity of αTx ≥ 1 for PI . �

An interesting feature of the set B constructed above is that a vertex (x̄, s̄) of PI is

tight on αT s ≥ 1 if and only if x̄ is on the boundary of B. Indeed, the latter implies

either gT1 (x− f) = 1 (if s̄3 = 0), or gT2 (x− f) = 1 (if s̄2 = 0). Again, substituting

x− f = Rs yields αT s̄ = 1 in both cases.

We now prove that we can restrict our attention even further, to a specific finite

family of splits and wedges. This will let us develop an algorithm to enumerate all
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these relevant S-free sets in Section 5.2. Proposition 44 states that if αT s ≥ 1 is

facet-defining for conv(PI), then α2, α3 > 0. If α1 = 0, then there is exactly one facet-

defining inequality of that form. The proof of Proposition 45 gives us the split set

B = {x ∈ R2 : 1
α2
≤
( −1
ρ

)
(x − f) ≤ 1

α3
}1. Otherwise, α > 0 and B is a wedge with its

apex on the line f + lin(r1). Then, Theorem 46 gives a useful characterization of the

corresponding facet-defining inequalities.

Theorem 46. (i) A valid inequality αT s ≥ 1 where α > 0 is facet-defining for conv(PI)

if and only if it is tight at three distinct vertices of conv(PI). (ii) Furthermore, at

least one of those three vertices corresponds to a vertex of conv(K2), and at least one

corresponds to a vertex of conv(K3).

Proof. Let Ps := projs conv(PI) be the projection of conv(PI) on the space of the s

variables. (i) ⇐: Since dim(Ps) = 3, a valid inequality that is tight at three affinely

independent points is facet-defining. (i) ⇒: Since dim(Ps) = 3, a facet of Ps may

contain fewer than three vertices of Ps only if its affine hull contains an extreme ray of

Ps. Assume that αT s ≥ 1 is a corresponding facet-defining inequality that is tight at

s̄ ∈ Ps, i.e. αT s̄ = 1. Then, αT (s̄+ ej) = 1 for some j ∈ {1, 2, 3}, implying that αj = 0.

This contradicts α > 0. (ii): Assume that three tight vertices (x1, s1), (x2, s2), (x3, s3) of

conv(PI) correspond to three vertices x1, x2, x3 of conv(Kj), for a single fixed j ∈ {2, 3}.
Let {h} = {2, 3} \ {j}. Then, s1

h = s2
h = s3

h = 0. The facet-defining inequality of

conv(PI) that is tight at these three vertices is sh ≥ 0 (Proposition 43), contradicting

α > 0. �

Theorem 46 means that in order to obtain facet-defining intersection cuts for PI ,

one should focus on S-free sets that have at least three S points on their boundary: at

least one of each of K2 and K3. This means that each of those S-free sets is tight at

two points of either K2 or K3. In other words, one of its facets coincides with a facet of

either conv(K2) or conv(K3). See Figure 5.1b. An analogous result is well-known in the

case of an infinite relaxation of PI [38, 28].

5.2 Enumerating the vertices of the knapsacks

In this section we describe a simple algorithm for enumerating the vertices of the two

knapsack sets K2 and K3 described in Section 5.1, allowing us to enumerate all the splits

1 If f and ρ are rational numbers, we can compute geometrically a maximal lattice-free set of that

form. Specifically, letting d ∈ Z such that fd ∈ Z and ρd ∈ Z, g = gcd(d, ρd) and v = fd
g −

⌊
fd
g

⌋
, we

get the cut g
d(1−v)s2 + g

dv s3 ≥ 1, provided that fd
g /∈ Z.
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and wedges that induce facets of conv(PI).

Since we have a complete description of the extreme points and rays of conv(PI),

its facet-defining inequalities could be obtained by enumerating the vertices of its polar,

as shown by Andersen, Louveaux, Weismantel and Wolsey [5, 4] in dimension two, and

Basu, Hildebrand and Köeppe [23] in general dimensions. Although this approach has

been performed [61] it has two drawbacks: Even separation in two dimensions relies on

optimizing over a cut-generating linear program (CGLP) with the simplex method, which

adds a source of numerical inaccuracies. Then, finding all facet-defining inequalities

would require enumerating the vertices of this CGLP, a difficult computational task.

Here, instead, we exploit the characterization provided by Theorem 46 to enumerate the

facet-defining inequalities of conv(PI).

Enumerating the vertices of the knapsack sets K2 and K3 is a particular case of

the integer hull problem. Harvey [53] devised an algorithm for enumerating the facets

of the integer hull of an arbitrary two-dimensional polyhedron. The complexity of the

algorithm is O(n logAmax) where n is the number of input inequalities and Amax is the

magnitude of the largest input coefficient. This algorithm is optimal in the sense that

no better asymptotic bound is possible for the problem. In the more specific case of a

two-dimensional knapsack set, Agra and Constantino [1, 2] and Atamtürk and Rajan [8]

independently gave polynomial-time algorithms. Both are based on the two-dimensional

knapsack optimization algorithm of Hirschberg and Wong [54].

Despite the abundant earlier work on the topic, we develop a different method for

computing the vertices of the integer hull of a knapsack, with the following motivation.

First, our method has a simple geometric interpretation that allows us to prove an upper

bound on the split rank of conv(PI) (Section 5.3). Secondly, it is easy to implement and

yields a very fast code, which we use in our computations (Section 5.4).

Consider the two sets

A = conv
(
Z2 ∩

((
φ
0

)
+ cone{( ρ1 ) , ( −1

0 )}
))
,

B = conv
(
Z2 ∩

((
φ
0

)
+ cone{( ρ1 ) , ( 1

0 )}
))
.

Observe that A is simply conv(K3) and B is conv(K2). Our goal is to obtain the set of

vertices of A and of B. For simplicity, we assume 0 < φ < 1. If that is not the case,

A and B can be translated along the x1 axis to enforce the assumption; the resulting

vertices can then be translated back to obtain those of the original sets. An alternative
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φ0 1

A

B

(a) φ = φ̂+ ρ

φ0 1

A

B
u

(b) φ 6= φ̂+ ρ and u ∈ Z2 (S shown in dashed
lines)

Figure 5.2: Illustration of Propositions 47 and 48.

definition of A and B, then, is the following:

A = conv
{
x ∈ Z2 : x1 − ρx2 ≤ φ, x2 ≥ 0

}
,

B = conv
{
x ∈ Z2 : x1 − ρx2 ≥ φ, x2 ≥ 0

}
.

Note that (0, 0) and (1, 0) are always vertices of A and B, respectively. The next

proposition shows that, in some cases, these are the only vertices of these two sets

(Figure 5.2a). We recall that φ̂+ ρ is the fractional part of φ+ ρ.

Proposition 47. If φ = φ̂+ ρ, then vert(A) = {( 0
0 )} and vert(B) = {( 1

0 )}.

Proof. First, note that the condition on φ implies that ρ ∈ Z. We can, therefore, round

down the right-hand side of one of the inequalities that define A, to obtain

A = conv
{
x ∈ Z2 : x1 − ρx2 ≤ 0, x2 ≥ 0

}
.

Clearly, (0,0) is the only vertex of the linear relaxation of this set. Since the vertex

is integral, then the linear relaxation coincides with its integer hull. We conclude that

(0, 0) is the only vertex of A. To prove that (1, 0) is the only vertex of B, we proceed

similarly. �

Now, we focus on the case where φ 6= φ̂+ ρ, and the previous proposition does not

apply. It turns out that the vertices of A and B are related to the lattice-free split S,

given by

S =
{
x ∈ R2 : 0 ≤ x1 − bφ+ ρcx2 ≤ 1

}
.

Let u ∈ R2 be the point where the ray
(
φ
0

)
+ cone ( ρ1 ) meets the split. The next
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proposition shows that, when u is an integral point, the vertices of A and B can be also

easily determined (see Figure 5.2b).

Proposition 48. If u ∈ Z2 then vert(A) = {( 0
0 ) , u} and vert(B) = {( 1

0 ) , u}.

Proof. First, we prove that u2x1− u1x2 ≤ 0 is a valid inequality for A. We assume that

the ray hits the boundary of the split on the “B-side”, i.e. on the line x1−bφ+ ρcx2 = 1.

The other case is analogous. Let x ∈ A∩Z2. Since x is not in the interior of the split, it

must satisfy either x1 − bρ+ φcx2 ≤ 0 or x1 − bρ+ φcx2 ≥ 1. We prove that, in either

case, u2x1 − u1x2 ≤ 0.

First, suppose x1 − bφ+ ρcx2 ≤ 0. Since u2 ≥ 0, we can multiply both sides of

this inequality by u2 to obtain u2x1 − bφ+ ρcu2x2 ≤ 0. Also, since u is on the B-side

boundary of the split, then u1 − bφ+ ρcu2 = 1. Therefore, −(u1 − bφ+ ρcu2)x2 ≤ 0.

Summing the two previous inequalities, we obtain u2x1 − u1x2 ≤ 0, as desired.

Now suppose x1−bφ+ ρcx2 ≥ 1. Since u satisfies u1−ρu2 = φ and u1−bφ+ ρcu2 =

1, then we must have u1 = ρ−φbφ+ρc
ρ−bφ+ρc , u2 = 1−φ

ρ−bφ+ρc . Let λ1 = φ
ρ−bφ+ρc and λ2 = 1

ρ−bφ+ρc .

Since u is on the B-side boundary of the split, we have φ < φ̂+ ρ. That is, φ < φ+ ρ−
bφ+ ρc, which implies ρ − bφ+ ρc > 0. Since, by assumption, 0 < φ < 1, we conclude

that λ1, λ2 ≥ 0. Using the previous characterization of u, it is also straightforward to

verify that, if we multiply the valid inequality −x1 + bφ+ ρcx2 ≤ −1 by λ1, multiply

the valid inequality x1 − ρx2 ≤ φ by λ2, and then sum the resulting inequalities, we

obtain u2x1 − u1x2 ≤ 0, as desired.

Since u2x1 − u1x2 ≤ 0 is valid, we may write

A = conv

x ∈ Z2 :

u2x1 − u1x2 ≤ 0

x1 − ρx2 ≤ φ

x2 ≥ 0

 .

It is not hard to see that (0, 0) and u are the only vertices of the linear relaxation of

this set. Since the linear relaxation has integer vertices, it coincides with its integer

hull. We conclude that (0, 0) and u are the only vertices of A. The proof for vert(B) is

similar. �

Now we consider two more interesting cases, when u /∈ Z2. In the first case, illustrated

in Figure 5.3, the ray hits the boundary of the split on the “B-side”, i.e. on the line

x1−bφ+ ρcx2 = 1. The next proposition describes two sets Ā and B̄ such that vert(A) =

vert(Ā) and vert(B) = {( 1
0 )} ∪ vert(B̄). That is, in order to enumerate the vertices of

A and B, it is sufficient to enumerate the vertices of Ā and B̄, then add the point ( 1
0 ).

The vertices of Ā and B̄ can be enumerated recursively, as we will see later.
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φ0 1

A

B

u
v

(a) A, B, u, v and S (dashed lines)

φ0 1

Ā
B̄

f̄
u

v

(b) Ā and B̄

Figure 5.3: Illustration of proposition 49.

Proposition 49. Suppose u /∈ Z2 and φ < φ̂+ ρ. Let v be the lattice point closest

to u in the segment between u and ( 1
0 ). Let f̄ be the intersection between the segment

connecting ( 0
0 ) to v, and the segment connecting

(
φ
0

)
and u. Define

Ā = conv
(
Z2 ∩

(
f̄ + cone

{
( ρ1 ) , ( 0

0 )− f̄
}))

B̄ = conv
(
Z2 ∩

(
f̄ + cone

{
( ρ1 ) , v − f̄

}))
Then vert(A) = vert(Ā) and vert(B) = {( 1

0 )} ∪ vert(B̄).

Proof. (i) First, observe that Ā can be written as

Ā = conv

{
x ∈ Z2 :

x1 − ρx2 ≤ φ

v2x1 − v1x2 ≤ 0

}
.

Also, because the triangle ( 0
0 ) ,
(
φ
0

)
, f̄ is contained in the split S, and thus contains no

integral points, the inequality v2x1− v1x2 ≤ 0 can be added to the description of the set

A, without affecting its definition:

A = conv

x ∈ Z2 :

x1 − ρx2 ≤ φ

v2x1 − v1x2 ≤ 0

x2 ≥ 0

 .

Thus, it becomes clear that A ⊆ Ā.

In the following, we prove that vert(A) = vert(Ā). Let x ∈ R2. First, we prove

that, if x /∈ vert(A), then x /∈ vert(Ā). We may assume x ∈ Ā, since otherwise x is

clearly not a vertex of Ā, and there is nothing to prove. We have two cases. In the

first case, suppose x ∈ A. Since x is not a vertex of A, there exist y1, y2 ∈ A \ {x}
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such that x = 1
2
y1 + 1

2
y2. Since A ⊆ Ā, then y1, y2 ∈ Ā, and we conclude that x is

also not a vertex of Ā. In the second case, suppose x /∈ A. This implies x2 < 0. Let

y1 = x− εv, y2 = x+ εv, where ε = −x2
v2
> 0. Note that y1 ∈ Ā, since

y1 = x︸︷︷︸
∈Ā

+ ε︸︷︷︸
≥0

(−v)︸︷︷︸
∈rec(Ā)

.

We also have y2 ∈ Ā, since

y2 =

(
0

0

)
︸︷︷︸
∈Ā

+

(
−x1 +

v1x2

v2

)
︸ ︷︷ ︸

≥0

(
−1

0

)
︸ ︷︷ ︸
∈rec(Ā)

.

Since y1, y2 ∈ Ā and x = 1
2
y1 + 1

2
y2, we conclude, also in this case, that x /∈ vert(Ā).

Now we prove that, if x /∈ vert(Ā), then x /∈ vert(A). Similarly, we may assume

x ∈ A, otherwise x is clearly not a vertex of A, and there is nothing to prove. Since

A ⊆ Ā, this also implies that x ∈ Ā. We have two cases. In the first case, suppose

x2 = 0. Since x satisfies v2x1− v1x2 ≤ 0, then x1 ≤ 0. Since x is not a vertex of Ā, then

x 6= ( 0
0 ), and x1 < 0. Therefore,

x =

(
0

0

)
︸︷︷︸
∈A

+ (−x1)︸ ︷︷ ︸
>0

(
−1

0

)
︸ ︷︷ ︸
∈rec(A)

.

We conclude that x is not a vertex of A. In the second case, suppose x2 > 0. Since

x is not a vertex of Ā, there exists d ∈ R2 \ {0} such that x + d, x − d ∈ Ā. Let

y1 = x+ εd, y2 = x− εd, for some ε > 0. If ε is small enough, we have y1
2, y

2
2 ≥ 0, which

implies y1, y2 ∈ A. Since x = 1
2
y1 + 1

2
y2, we conclude that x is not a vertex of A.

(ii) First, observe that B and B̄ can be written as

B = conv

{
x ∈ Z2 :

x1 − ρx2 ≥ φ

x2 ≥ 0

}
,

B̄ = conv

x ∈ Z2 :

x1 − ρx2 ≥ φ

v2x1 − v1x2 ≤ 0

x2 ≥ 0

 .

Thus, it is clear that B̄ ⊆ B. In the following, we prove that vert(B) = {( 1
0 )}∪vert(B̄).

Let x ∈ R2. First, we prove that if x /∈ vert(B) then x 6= ( 1
0 ) and x /∈ vert(B̄). It is
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easy to see that ( 1
0 ) ∈ vert(B), thus x 6= ( 1

0 ). Furthermore, if x /∈ B̄, then x is clearly

not a vertex of B̄ and we done, so we assume x ∈ B̄. We have two cases. In the first

case, suppose v2x1 − v1x2 = 0. We can prove that there exists ε > 0 such that

x = v︸︷︷︸
∈B̄

+ ε︸︷︷︸
>0

v︸︷︷︸
∈rec(B̄)

.

Therefore, x is not a vertex of B̄. In the second case, suppose v2x1 − v1x2 < 0. Since x

is not a vertex of B, there exists d ∈ R2 \ {0} such that x + d, x − d ∈ B. For a small

enough ε > 0, we can prove that x+ εd, x− εd ∈ B̄. In either case, we conclude that x

is not a vertex of B̄.

Now we prove that, if x 6= ( 1
0 ) and x /∈ vert(B̄), then x /∈ vert(B). Clearly, if x /∈ B

then x /∈ vert(B) and we are done, so we assume x ∈ B. Once again, we have two cases.

In the first case, suppose x ∈ B̄. Since x /∈ vert(B̄), there exist y1, y2 ∈ B̄ \ {x} such

that x = 1
2
y1 + 1

2
y2. Since B̄ ⊆ B, then y1, y2 ∈ B. Therefore, x is not a vertex of B. In

the second case, suppose x /∈ B̄. Since x 6= ( 1
0 ), it is clear that, if x2 = 0, then x is not

a vertex of B and we are done. Therefore, we assume x2 > 0. Let

y1 = x+ ε [v − ( 1
0 )] , y2 = x− ε [v − ( 1

0 )] ,

where ε > 0. It is not hard to prove that, for a small enough ε, we have y1, y2 ∈ B.

Since x = 1
2
y1 + 1

2
y2, we conclude that, in any case, x /∈ vert(B). �

In the case where the ray hits the boundary of the split on the “A-side”, i.e. on the

line 0 = x1 − bφ+ ρcx2, we have a similar result. The next proposition describes two

sets Ā and B̄ such that vert(A) = {( 0
0 )} ∪ vert(Ā) and vert(B) = vert(B̄). We skip its

proof since it is analogous to the proof of Proposition 49.

Proposition 50. Suppose u /∈ Z2 and φ > φ̂+ ρ. Let v be the lattice point closest

to u in the segment between u and ( 0
0 ). Let f̄ be the intersection between the segment

connecting ( 1
0 ) to v, and the segment connecting

(
φ
0

)
and u. Define

Ā = conv
(
Z2 ∩

(
f̄ + cone

{
( ρ1 ) , v − f̄

}))
B̄ = conv

(
Z2 ∩

(
f̄ + cone

{
( ρ1 ) , ( 0

0 )− f̄
}))

Then vert(A) = {( 0
0 )} ∪ vert(Ā) and vert(B) = vert(B̄).

Now the only question remaining is how to compute the vertices of Ā and B̄. The next

proposition shows that this can be done recursively. By applying an appropriate affine
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φ0 1

v2

v1

f̄

u

(a) φ < φ̂+ ρ

φ0 1

v2

v1

f̄

u

(b) φ > φ̂+ ρ

Figure 5.4: How f̄ , u, v1 and v2 are found in Proposition 51.

integral unimodular transformation to the coordinate system and scaling of the rays, the

sets Ā and B̄ can be written in the same form as the original sets A and B. Therefore,

the vertices of Ā and B̄ can be obtained by recursively applying Propositions 47–50.

Proposition 51. Suppose u /∈ Z2. If φ < φ̂+ ρ, let Ā and B̄ be defined as in Proposition

49. If φ > φ̂+ ρ, let Ā and B̄ be defined as in Proposition 50. In either case, there exist

φ̄, ρ̄ ∈ R and an affine integral unimodular transformation τ : R2 → R2 such that

τ(Ā) = conv
(
Z2 ∩

((
φ̄
0

)
+ cone{( ρ̄1 ) , ( −1

0 )}
))
,

τ(B̄) = conv
(
Z2 ∩

((
φ̄
0

)
+ cone{( ρ̄1 ) , ( 1

0 )}
))
.

Proof. Suppose φ < φ̂+ ρ.

Let f̄ and v ∈ Z2 as defined in Proposition 49. Let v1 = v and let v2 be the lattice

point closest to u in the half-line u+λ(u− ( 1
0 )), λ ≥ 0. That is, v1 and v2 are the closest

lattice points to u in the line passing through u and ( 1
0 ) (see figure 5.4a).

Let τ : R2 → R2 be an affine function such that τ ( 0
0 ) = ( 0

0 ) , τ(v1) = ( 1
0 ) , τ(v2) =

( 1
1 ) . Such a transformation exists, since v1 and v2 are linearly independent. Furthermore,

it is integral and unimodular, since the triangle defined by ( 0
0 ) , v1 and v2 has integral

vertices and its area equals 1
2
. Therefore,

τ(Ā) = conv
(
Z2 ∩

(
τ(f̄) + cone

{
τ ( ρ1 ) , τ

(
( 0

0 )− f̄
)}))

τ(B̄) = conv
(
Z2 ∩

(
τ(f̄) + cone

{
τ ( ρ1 ) , τ(v1 − f̄)

}))
Since f̄ ∈ conv{( 0

0 ) , v1}, then τ(f̄) ∈ conv{( 0
0 ) , ( 1

0 )}, which implies that there exists

φ̄ ∈ R such that τ(f̄) =
(
φ̄
0

)
. Furthermore, it is not hard to see that there exist
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φ0 1

Ā

B̄

f̄

u

v1

v2

(a) Figure 5.3b zoomed in.

0

τ(Ā)
τ(B̄)

τ(f̄)

τ(u)

τ(v1)

τ(v2)

(b) Transformed by τ

Figure 5.5: Transformation τ of Proposition 51.

λ1, λ2, λ3 ∈ R+ such that

λ1τ ( ρ1 ) = ( ρ̄1 ) , λ2τ
(
( 0

0 )− f̄
)

= ( −1
0 ) , λ3τ

(
v1 − f̄

)
= ( 1

0 )

This concludes the proof for this case (see Figure 5.5). When φ > φ̂+ ρ, the proof is

similar, constructing v1 and v2 in an analogous way (see figure 5.4b), but we let τ be an

affine function satisfying τ ( 1
0 ) = ( 1

0 ) , τ(v1) = ( 0
0 ) , τ(v2) = ( 0

1 ) , instead. �

Using Propositions 47–50, we now have a complete recursive algorithm for computing

the vertices of A and B. The first step is to verify whether φ = φ̂+ ρ. If so, the vertices

are given by Proposition 47. If not, we construct the split S and verify whether the

intersection of its boundary with the ray
(
φ
0

)
+ cone ( ρ1 ) is an integral point. If so, the

vertices of A and B are given by Proposition 48. If not, then either Propositions 49 or 50

apply, in which case the vertices of A and B are the same as the vertices of Ā and B̄, in

addition to either ( 0
0 ) or ( 1

0 ). In order to compute the vertices of Ā and B̄, we proceed

recursively. First, we apply the transformation described in Proposition 51, so that Ā

and B̄ are written in the same form as the original sets A and B, then we repeatedly

apply Propositions 47–50. A non-recursive version of this algorithm is described in

Algorithm 52.

Now that we have an algorithm for enumerating the vertices of A and B, we finish

this section by describing how can we use the previous propositions to get a complete

list of maximal S-free sets that induce facets of PI .

Definition 53 describes the sequence of S-free sets that we construct, one per iteration

of the vertex enumeration algorithm. Note that the definition is recursive. Given φ and

ρ, Propositions 47–50 show how to compute one S-free set Wu. Then, Proposition 51

provides an affine transformation τ and a new model, determined by φ̄ and ρ̄, which will
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Algorithm 52 Algorithm for enumerating the vertices of the knapsack sets

1: function EnumerateVertices(φ, ρ)
2: U ← I, t← 0
3: XA ← {(0, 0)}, XB ← {(1, 0)}
4: loop

5: if φ == φ̂+ ρ then
6: return XA, XB

7: else if φ < φ̂+ ρ then

8: u←
(
ρ−φbφ+ρc
ρ−bφ+ρc ,

1−φ
ρ−bφ+ρc

)
9: if u ∈ Z2 then

10: return XA ∪ {Uu+ t}, XB ∪ {Uu+ t}
11: v1 ← (1 + bφ+ ρc bu2c , bu2c)
12: v2 ← (1 + bφ+ ρc du1e , du1e)
13: XB ← XB ∪ {Uv1 + t}

14: W ←
[
1 1
0 1

] [
v1

1 v2
1

v1
2 v2

2

]−1

15: y ←
(

0
0

)
16: f ′ ←

(
v12φ

v11−v12ρ
,

v11φ

v11−v12ρ

)
17: else if φ > φ̂+ ρ then

18: u←
(

φbφ+ρc
bφ+ρc−ρ ,

φ
bφ+ρc−ρ

)
19: if u ∈ Z2 then
20: return XA ∪ {Uu+ t}, XB ∪ {Uu+ t}
21: v1 ← (bφ+ ρc bu2c , bu2c)
22: v2 ← (bφ+ ρc du1e , du1e)
23: XA ← XA ∪ {Uv1 + t}

24: W ←
[
−1 −1
0 1

] [
v1

1 − 1 v2
1 − 1

v1
2 v2

2

]−1

25: y ←
(

1
0

)
−W

(
1
0

)
26: f ′ ←

(
φ(v11−1)−ρv12
ρv12−(v11−1)

,
(1−φ)v12

ρv12−(v11−1)

)
27: f ← Wf ′ + y, φ← f1

28: r ← W ( ρ1 ) + y, ρ← r1
r2

29: t← t− UW−1y
30: U ← UW−1
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yield further S-free sets. The sequenceW(φ, ρ) is constructed by concatenating Wu and

the subsequent S-free sets W(φ̄, ρ̄) given by the new model, suitably transformed back

into the original space.

Definition 53. Let W(φ, ρ) = 〈W1, . . . ,Wk〉 be a sequence of sets defined as follows:

(i) If the conditions of Proposition 47 are satisfied, then W(φ, ρ) = 〈S〉, where S is

the split defined previously.

(ii) If the conditions of Proposition 48 are satisfied, then W (φ, ρ) = 〈Wu〉, where

Wu = u+ cone {( 0
0 )− u, ( 1

0 )− u} .

(iii) Suppose that the conditions of either Proposition 49 or Proposition 50 are satisfied.

Let φ̄, ρ̄, τ be defined as in Proposition 51, and let

W(φ̄, ρ̄) =
〈
W̄1, . . . , W̄l

〉
.

Then we define

W(φ, ρ) =
〈
Wu, τ

−1(W̄1), . . . , τ−1(W̄l)
〉
,

where Wu is defined as in (ii).

For every j ∈ {1, . . . , k}, it is easy to see that Wj is tight at three integral points;

either two vertices of A and one vertex of B, or two vertices of B and one vertex of

A. Observe moreover that, for any combination of three vertices not generated in this

fashion, one could not construct a corresponding S-free wedge: First, note that the two

vertices belonging to the same side must be consecutive, otherwise the wedge cannot be

S-free. Then, given a pair of tight vertices on one side, the S-free wedge that is tight

at those vertices and a third on the other side is unique. For every pair of consecutive

vertices of either A or B there is a wedge Wj that is tight for these vertices. Wj also

has a vertex that is tight on the other side. If we replace this third vertex by any other,

the other vertex will either be on the boundary or outside of the initial wedge. In the

first case, the new wedge would be identical to the initial one, and in the second case, it

would not be S-free.

The next proposition shows that Wj is also S-free. Then Theorem 46 implies that

the intersection cut from Wj yields a facet-defining inequality for conv(PI). By Propo-

sition 44, we now have a complete H-description of conv(PI).

Proposition 54. Every set in W(φ, ρ) is maximal and S-free.
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Figure 5.6: Wedges W0 and W1 in the configuration of Lemma 55.

Proof. We prove the claim by structural induction. IfW(φ, ρ) = 〈S〉 orW(φ, ρ) = 〈Wu〉,
then the proposition is clearly true. Now supposeW(φ, ρ) =

〈
Wu, τ

−1(W̄1), . . . , τ−1(W̄l)
〉
,

and suppose, by induction, that W̄1, . . . , W̄l are maximal S-free sets containing
(
φ̄
0

)
in

their interior. Clearly, Wu is maximal S-free and contains
(
φ
0

)
. Let j ∈ {1, . . . , k}. We

prove that the same holds for W̄j. Since W̄j is S-free, then τ−1(Wj) does not contain

any integral points above the line that connects (0, 0) and v1 (in the first case of Propo-

sition 51) or (1, 0) and v1 (in the second case). Furthermore, the region of τ−1(W̄j) that

lies below the line is entirely contained in Wu. Therefore, W̄j is S-free. Since W̄j is

maximal, it is not hard to see that τ−1(Wj) is also maximal. �

5.3 Upper bound on the split rank

In this section, we prove that the split rank of conv(PI) is at most the sum of the number

of vertices of A and the number of vertices of B. In the following, let

PLP =
{

(x, s) ∈ R2 × R3
+ : ( x1x2 ) =

(
φ
0

)
+ ( ρ1 ) s1 + ( 1

0 ) s2 + ( −1
0 ) s3

}
be the linear relaxation of PI . In order to prove our result, we first need Lemma 55. It

shows that given two wedges in a specific configuration and their induced intersection

cuts, there is a half-plane where any point cut off by one is cut off by the other.

Lemma 55. Let W0 and W1 be two distinct wedges with apex on f + cone(r1) and con-

taining f in their relative interiors. Let (α0)T s ≥ 1 and (α1)T s ≥ 1 be the intersection

cuts obtained from W0 and W1, respectively. Suppose that α1
1 < α0

1, and that the bound-

aries of W0,W1 intersect at two distinct points y2, y3 ∈ R2. Let H ⊆ R2 be the closed

half-space that contains y2, y3 in its boundary and does not contain the apices of W0,W1

(Figure 5.6). If f ∈ interior(H), then, for any (x̄, s̄) ∈ PLP such that x̄ ∈ interior(H)
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and α1T s̄ < 1, we also have α0T s̄ < 1.

Proof. First, we construct αh ∈ R3 such that, for any (x̄, s̄) ∈ PLP , we have x̄ ∈
interior(H) if and only if (αh)T s̄ < 1. The statement x̄ ∈ interior(H) is equivalent to

cT x̄ < d for some c ∈ R2, d ∈ R. Recalling that x̄ = f + Rs̄, this is equivalent to

cT (f + Rs̄) < d, i.e., (cTR)s̄ < d − cTf . Since f belongs to the interior of H, we know

that cTf < d, so the right-hand side of the previous equation is positive. Dividing by

that right-hand side, we obtain the desired form (αh)T s̄ < 1 where αh = cTR
d−cT f .

Next, we prove that α0 is a convex combination of α1 and αh. Consider the three

lines α0
1s1 + α0

2s2 = 1, α1
1s1 + α1

2s2 = 1 and αh1s1 + αh2s2 = 1. Note that each of these

correspond to one face of each of W0 and W1 and H, so they intersect in a single point

y2. Therefore, (α0
1, α

0
2) = λ2(αh1 , α

h
2) + (1 − λ2)(α1

1, α
1
2), for some λ2 ∈ R. Similarly,

for the other intersection y3, we obtain (α0
1, α

0
3) = λ3(αh1 , α

h
3) + (1 − λ3)(α1

1, α
1
3). for

some λ3 ∈ R. Together, these relationships show λ2 = λ3. Let λ := λ2 = λ3, we get

α0 = λαh + (1− λ)α1. Since α1
1 < α0

1 and H does not contain the apex of W0 or W1, we

have that α1
1 < α0

1 < αh1 , so α0 is not only a linear combination of αh and α1, but also a

convex combination (i.e. 0 ≤ λ ≤ 1). Therefore, αh
T
s < 1 and α1T s < 1 together imply

α0T s < 1. �

Let W1, . . . ,Wk be as defined in Subsection 5.2. The next theorem shows that the

intersection cut from Wj has a split rank at most j.

Theorem 56. For every j ∈ {1, . . . , k}, the intersection cut from Wj has split rank at

most j.

Proof. We prove the claim by induction. The first wedge W1 has the same intersection

points as the split S, so the corresponding cut has split rank 1. Let j ∈ {2, . . . , k} and

assume now that Wj−1 yields a cut of split rank j− 1 or less. In the following, we prove

that the intersection cut generated from Wj is implied by the intersection cut generated

from Wj−1 together with a split cut, and, therefore, Wj yields a cut with split rank at

most j. We assume that Wj is not a split, otherwise there is nothing to prove. Note

that Wj−1 and Wj are in the same configuration as wedges W0 and W1 of Lemma 55.

Let (x, s) ∈ PLP be a point that does not satisfy the intersection cut from wedge Wj.

This implies that x ∈ interior(Wj). If x ∈ interior(H), we apply Lemma 55 to show that

(x, s) also does not satisfy the cut from wedge Wj−1. If x /∈ interior(H), then x belongs

to the interior of the split that was considered when generating Wj, hence (x, s) does not

satisfy the intersection cut obtained from this split. We conclude that the intersection

cut obtained from Wj is implied by the cut from Wj−1 together with a split cut. Since
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the cut obtained from Wj has split rank at most j − 1, then the cut obtained from Wj

has split rank at most j. �

Corollary 57. Let k2 and k3 be the number of vertices of conv(K2) and conv(K3),

respectively. The split rank of conv(PI) is at most k2 + k3 − 1.

We finish this section by noting that 2-step MIR inequalities [33] can be derived as

inequalities for conv(PI), and in fact they can be seen as inequalities obtained once the

algorithm switches from using Proposition 49 to using Proposition 50 (or vice-versa)

for the first time. This suggests that perhaps a lower bound on the split rank may be

obtained by considering such cases, since 2-step MIR inequalities have split rank 2. We

were, however, unable to derive any such lower bound.

5.4 Computational Experiments

In order to evaluate the strength of wedge cuts, we implemented a cut generator and

tested it on the benchmark set of the MIPLIB 2010. We measured the gap closed by

the inclusion of wedge cuts and compared it to the gap closed by considering GMI cuts

alone.

The cut generator performed the following steps. First, the linear relaxation of the

presolved problem was solved, and a certain basic solution with value zLP was obtained.

The optimal tableau was stored. Although we solved the relaxation again at a later time,

we always used this first optimal tableau to generate all the cuts, hence obtaining only

rank-1 cuts. Next, for each row of the tableau corresponding to an integral basic variable,

an GMI cut was generated and added to the problem. The strengthened relaxation was

then solved again, and another basic solution xGMI , with value zGMI was obtained.

Then, every possible wedge cut was generated and added to the problem, provided

that it cut off the previous solution xGMI . More precisely, for each row of the tableau

corresponding to an integral basic variable, and for each integral non-basic variable xi

that has non-zero coefficient in that row, we identified the coefficient corresponding to xi

with ρ, and generated all the facet-defining wedge and split cuts, as described in Section

5.1. The cut coefficients for the remaining integral non-basic variables was calculated

according to the algorithm from Chapter 3. Finally, the relaxation was solved again,

and a basic solution with value zW was obtained. In the following, we also denote by

zOPT the value of the optimal solution for the original mixed-integer problem.

The cut generator was implemented in C++ and compiled with the GNU C++ Com-

piler 4.8.4. The complete source code has been made available online [67]. For the LP
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solver, we used the library IBM ILOG CPLEX 12.6.2. Considerable care was taken to

avoid the generation of invalid cuts. CPLEX was configured for numerical emphasis,

and once the LP was solved, each double-precision floating point entry of the resulting

tableau was converted to an exact rational number. To avoid the propagation of floating

point errors, the enumeration of the facets of the knapsack sets was performed using exact

arithmetic, with the help of the GNU Multiple Precision Arithmetic Library 6.1.0 [49].

The cut coefficients were then converted back to double-precision floating point num-

bers and given to CPLEX. We discarded all cuts with high coefficient dynamism (ratio

between the magnitudes of largest and the smallest coefficients of 106 or larger), then

considered only the remaining inequalities that cut off the original fractional solution

xLP by a significant amount (10−6 or more).

Our testbed was the benchmark set of the MIPLIB 2010, which is composed by

87 instances of real-world mixed integer programs. For each instance, the following

performance indicators were computed:

• ORIG-GAP, the original gap between the first linear relaxation and the original

mixed-integer program:
zOPT − zLP
|zOPT |

• GMI-PERF, the amount of the original gap that was closed by the inclusion of the

GMI inequalities:
zGMI − zLP
zOPT − zLP

• W-PERF, the amount of the original gap that what was closed by the inclusion of

all the wedge inequalities:
zW − zLP
zOPT − zLP

• W-REL, the contribution of the wedge cuts to the gap closure; that is, the amount

of the original gap that was closed by wedge inequalities which are not equivalent

to GMI inequalities:
zW − zGMI

zW − zLP

• TIME, the total CPU time, in seconds, required process the instance.

Out of the 87 instances, three were infeasible (ash608gpia-3col, enlight14, ns1766074)

and four (acc-tight5, bnatt350, m100n500k4r1, neos-849702) had zLP equal to zOPT .

These instances were not considered. Ten instances exceeded our 60 hour CPU-time
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Instance ORIG-GAP (%) MIR-PERF (%) W-PERF (%) W-REL (%) TIME (s)

gmu-35-40.pre 0.01 0.07 9.94 99.26 122
eil33-2.pre 13.14 4.28 15.25 71.97 8972
neos-1337307.pre 0.4 3.76 6.45 41.66 32572
opm2-z7-s2.pre 25.29 0.62 0.98 37.17 284884
mik-250-1-100-1.pre 19.65 53.52 73.38 27.07 14
neos-686190.pre 23.7 4.61 5.54 16.82 33697
mine-90-10.pre 11.15 12.4 14.51 14.6 970
cov1075.pre 14.29 3.6 4.19 13.9 95
mine-166-5.pre 45.09 6.57 7.58 13.35 1892
n3div36.pre 12.59 16.38 18.85 13.09 268969
air04.pre 1.07 8.14 9.12 10.81 144318
rococoC10-001000.pre 34.42 21.16 22.41 5.58 226
rmine6.pre 1.12 14.57 15.34 5 2751
reblock67.pre 11.61 21.38 22.46 4.81 446
ran16x16.pre 18.48 17.25 18.07 4.5 1
iis-bupa-cov.pre 26.4 1.22 1.26 3.59 9892
sp98ir.pre 1.37 4.63 4.77 2.88 10242
iis-pima-cov.pre 19.33 2.1 2.14 1.94 34347
iis-100-0-cov.pre 42.53 1.76 1.79 1.89 48
eilB101.pre 11.64 2.64 2.69 1.82 13247
mzzv11.pre 4.86 26.99 27.11 0.43 49301
roll3000.pre 13.9 21.83 21.91 0.37 356
dfn-gwin-UUM.pre 29.12 41.82 41.9 0.18 0
csched010.pre 18.52 3.89 3.9 0.15 647
msc98-ip.pre 1.56 17.78 17.81 0.14 26752
neos-916792.pre 17.53 4.06 4.06 0.14 112
mcsched.pre 8.56 0.04 0.04 0.08 4634
beasleyC3.pre 68.44 15.58 15.59 0.05 0

Table 5.1: Strength of wedge cuts versus GMI cuts alone.
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Instance CUTS-GMI CUTS-W GMI-T WEDGE-T

cov1075 582 174970 0.16 0.20
eil33-2 30 566411 7.61 8.35
gmu-35-40 27 58555 0.83 1.16
mik-250-1-100-1 100 30221 0.17 0.28
mine-166-5 1436 1336080 0.29 0.57
mine-90-10 1875 1022638 0.18 0.38
n3div36 48 3838798 32.06 41.67
neos-1337307 2263 8302981 1.13 1.52
neos-686190 254 3162782 5.56 5.54
opm2-z7-s2 7859 38797773 3.26 3.70

Table 5.2: Speed of wedge cuts versus GMI cuts.

limit. Out of the remaining 70 instances, 42 instances presented zGMI = zW . Table 5.1

presents the performance indicators for the remaining 28 instances.

It is well known that, when considering cuts from a single row of the simplex tableau,

GMI cuts are very hard to outperform. Indeed, Fukasawa and Goycoolea [44] imple-

mented an exact separator for knapsack cuts, a more general set of cuts that includes

our wedge cuts, and tested it on the MIPLIB 3.0 and the MIPLIB 2003. Out of the 48

instances processed, on top of GMI, knapsack cuts increased the gap closure by more

than 1 percentage point for only 8 instances, and more than 5 percentage points for only

one instance. It should be noted, however, that 44 instances could not be processed due

to time constraints in that study.

In our experiment, we obtained noticeably better results. Out of the 70 instances

processed, wedge cuts contributed to more than 1% of the gap closure for 20 instances,

and more than 5% for 13 instances. In fact, for 5 instances, the contribution from wedge

cuts was greater than 25%. For two instances, gmu-35-40 and eil33-2, the percentage

was exceptionally high, at 99.26% and 71.97%, respectively. For the instance gmu-35-40,

GMI cuts alone were only able to close 0.07% of the integrality gap, a negligible amount.

The inclusion of wedge cuts improved that closure to 9.94%, which is noticeable. For the

instance mik-250-1-100-1, although GMI cuts were able to reduce 53.52% of the gap,

the inclusion of wedge cuts pushed that reduction to 73.38%, a significant improvement.

Therefore, while our results indicate that, for most problems, wedge cuts do not seem to

improve the integrality gap significantly when compared to GMI cuts alone, they might

be useful for some particular classes of problems.

A side goal of our computational experiment to evaluate the efficiency of the enu-
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meration algorithm presented in Section 5.2 In order to do that, we run the experiments

again for the 10 instances for which wedge cuts presented the best performance, and we

collected the additional statistics:

• CUTS-GMI and CUTS-W, the number of GMI cuts and wedge cuts, respectively,

generated but not necessarily added to the relaxation,

• GMI-T and WEDGE-T, the average time needed to generate a single GMI cut

and a single wedge cut, respectively, in milliseconds,

The results are presented on Table 5.2. On average, the time spent to generate one

wedge cut was not much higher than the time spent to generate a single GMI cut. Note,

however, that the number of wedge cuts generated, on all instances, was much larger

than the number of GMI cuts, since we generate cuts for every tableau row, and for

every integral non-basic variable. As a consequence, the total running time for many

instances is prohibitively high, as seen in Table 5.1.

Next, instead of generating all possible wedge cuts for all possible combinations of

rows and integral non-basic variables, we implement some heuristics to bring down the

total number of cuts generated, and therefore the total running time of the algorithm.

Our goal was to select a small subset of wedge cuts that, when added to the linear re-

laxation of the problem, yields approximately the same benefits, in terms of gap closure,

as adding this entire family of cuts. We implemented three simple heuristics and tested

their impact, both individually and combined, on the 10 instances for which wedge cuts

presented the best performance.

Given a row and an integral non-basic variable, the first heuristic (Depth 5) limits

the number wedge cuts generated to five. More precisely, we stop Algorithm 52 after five

iterations, even if the stopping condition has not actually been reached. The motivation

is that, as the vertices of the knapsack sets get farther away from f , the wedges become

progressively thinner and, therefore, we would expect them to have progressively smaller

practical impact. As shown in Table 5.3, this indeed turns out to be the case. After

activating this heuristic, the gap closed is reduced by only 0.1 percentage points on

average, a negligible amount, while the total running time is reduced by 7.4%. We

conclude that this heuristic is moderately effective for most instances, although we do

note that, for a few instances, the reduction on running time may not be worth the

reduction in the gap closure (see instance cov1075, for example).

The second heuristic (100 Rows) limits to 100 the number of tableau rows selected

to generate wedge cuts. More precisely, after solving the initial linear relaxation, we

discard all, but the 100 tableau rows that have the most fractional right-hand side. This
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is motivated by the fact that, if f is very close to an integral point, we would expect

the number of generated wedges to be very small, and the generated cuts to be more

numerically unstable. As shown in Table 5.3, this heuristic is very effective. While the

gap closed is reduced by only 0.2 percentage points on average, the total running time

is reduced by as much as 55%.

Given a tableau row, the third heuristic (100 Rays) limits to 100 the number of

integral non-basic variables selected to generated wedge cuts, based on their reduced

cost. The motivation for this heuristic is that, when a non-basic integral variable is

selected to play the role of s1, it tends to receive better cut coefficients. It is natural,

therefore, to try to assign better coefficients to the variables that have the most impact

on the objective value. Unfortunately, as Table 5.3 shows, while this heuristic was very

successful at bringing down the total running time (a 98% reduction, on average), it also

had considerable impact on the gap closure (a reduction of 2.1 percentage points). We

conclude that this heuristic is too aggressive for most instances. Unfortunately, we were

unable to derive a better heuristic for selecting the integral non-basic variables.

Finally, we evaluated the impact of the three previous heuristics combined. The

results are shown in Table 5.3, under the header Combined. As we see, while the

three heuristics, together, were very effective at reducing the total running time of the

cut generating procedure, they unfortunately also had considerable negative impact on

the gap closure. Despite this, we note that wedge cuts still presented considerable

improvement for a small subset of instances (see gmu-35-40 and mik-250-1-100-1),

under very reasonable running times.
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Chapter 6

Conclusion

Since their introduction in the late 1950s by Gomory, cutting planes have become one of

the main ingredients of modern MIP solvers. A direction that has received considerable

attention in recent years is the generation of cutting planes from multi-row relaxations

of the simplex tableau. In this thesis, we studied computational aspects necessary for

the use of such multi-row cuts in practical settings. Next, we summarize our main

contributions and discuss possible directions for future research.

Trivial Lifting in Two Dimensions. In Chapter 3, we developed a more practical

method for performing the trivial lifting on two-row relaxations. For maximal lattice-

free sets, we proved that our algorithm always terminates in constant time, and for

the cases where the closed formula described in [19] is applicable, we showed that our

algorithm required precisely the same number of evaluations to the function ψ as the

closed formula. We also obtained an upper bound on the number of evaluations for non-

maximal lattice-free sets, which depends on the lattice-width of the set and on its second

covering minimum. Finally, we ran computational experiments, in order to evaluate the

practical efficiency of our algorithm, and observed that the algorithm performs at least

two orders of magnitude faster than the alternatives proposed in the literature.

An important direction for future research is obtaining similar algorithms for relax-

ations with three or more rows. The methods currently available for these relaxations

can quickly become a bottleneck for any cut generation scheme. Even if a practical exact

algorithm cannot be found for arbitrary dimensions, it would still be interesting to have

good heuristics.

Intersection Cuts from the Infinity Norm. In Chapter 4, we introduced a new

subset of multi-row intersection cuts based on the infinity norm. This subset is very

small, which makes it attractive computationally, and its cuts are minimal, meaning
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that they are not easily dominated. Unlike the other classes of multi-row intersection

cuts in the literature, our cuts work for relaxations with arbitrary numbers of rows and

they take into account the columns of the simplex tableau. We developed a geometric

algorithm to generate them and ran computational experiments to evaluate their impact

when used as cutting planes for solving real-world instances. We concluded that this

subset of valid inequalities yields, in terms of gap closure, around 50% of the benefits

of using all the valid inequalities for the continuous multi-row relaxation, but at a small

fraction of the computational cost, and with a significantly smaller number of cuts.

We highlight the following directions for future work:

(1) One limitation of our cut generator is that it does not produce maximal lattice-free

sets. While this has no effect on the coefficients of the continuous non-basic vari-

ables, it does negatively impact the coefficients for the integral non-basic variables.

It would be interesting to have a practical algorithm for converting non-maximal

lattice-free sets into maximal ones.

(2) In Section 4.3, we described several heuristics for selecting a subset of rows that

would be used to generate infinity cuts. While these heuristics worked well for

relaxations with two and three rows, they proved too slow for relaxations with four

or more rows. More sophisticated heuristics are needed.

Intersection Cuts for Single-Row Relaxations. In Chapter 5, we revisited single-

row cuts, with the objective of generating more valid inequalities; specifically, we were

interested in generating cuts that were not dominated by Gomory Mixed-Integer cuts.

Although single-row relaxations have been widely studied before, the novelty in our

approach was that we used the framework of multi-row intersection cuts. We focused

on a single-row relaxation of the simplex tableau where the integrality of a single non-

basic variable is preserved. We developed an algorithm to enumerate all the facet-

defining inequalities for this model, which leads to an upper bound on its split rank. We

implemented all the methods proposed, and performed computational experiments using

real-world instances. Our cut generation scheme proved to be very fast in practice. As far

as the effectiveness of the cuts is concerned, expectations were limited, since we generate

a subset of knapsack cuts, which have been shown by Fukasawa and Goycoolea [44] to be

only slightly stronger in practice than the GMI cuts they generalize. For some instances,

however, our cuts presented a clear improvement in terms of gap closed, over GMI cuts

alone.

We highlight the following directions for future work:
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(1) As discussed in Section 5.4, although our cut generator was very fast, in the sense

that the time it took to generate a single wedge cut was not much higher than

the time it took to generate a single GMI cut, we note that the number of wedge

cuts generated was exceedingly high. A better way of deciding which wedge cuts to

generate is needed.

(2) It would be interesting to generalize the results presented in Chapter 5 to two-row

relaxations with a single integral non-basic variables, and to measure the practical

performance of such cuts.
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[32] Gérard Cornuéjols and François Margot. On the facets of mixed integer pro-

grams with two integer variables and two constraints. Mathematical Programming,

120(2):429–456, 2009. (Cited on pages 3 and 9.)

[33] Sanjeeb Dash, Marcos Goycoolea, and Oktay Günlük. Two-step mir inequalities for
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[67] Laurent Poirrier and Álinson S. Xavier. Benchmark for multi-row intersection

cuts. https://github.com/iSoron/multirow, Accessed May 15, 2017. (Cited

on pages 34, 56, and 88.)

[68] Herbert E. Scarf. An observation on the structure of production sets with indivis-

ibilities. Proceedings of the National Academy of Sciences, 74(9):3637–3641, 1977.

(Cited on page 11.)

[69] Laurence A. Wolsey. Facets and strong valid inequalities for integer programs.

Operations Research, 24(2):367–372, 1976. (Cited on page 14.)

[70] Emre Yamangil. Valid Inequalities for Mixed-Integer Linear Programming Problems.

PhD thesis, Rutgers, The State University of New Jersey, 2015. (Cited on pages 40

and 42.)

[71] Giacomo Zambelli. On degenerate multi-row gomory cuts. Operations Research

Letters, 37(1):21–22, 2009. (Cited on page 3.)

[72] Eitan Zemel. Lifting the facets of zero–one polytopes. Mathematical Programming,

15(1):268–277, 1978. (Cited on page 14.)

104

http://arxiv.org/pdf/1203.4175v1.pdf
http://arxiv.org/pdf/1203.4175v1.pdf
https://github.com/iSoron/multirow

	Introduction
	Background
	Continuous multi-row relaxations
	Lattice-free sets and intersection cuts
	Mixed-integer multi-row relaxations

	Efficient Trivial Lifting in Two Dimensions
	Main algorithm
	Preprocessing step
	Complexity analysis
	Convex lattice-free sets in general
	Maximal lattice-free sets

	Computational experiments
	Algorithms and variations
	Instances
	Results and discussion


	Intersection Cuts from the Infinity Norm
	Definition of infinity cuts
	Computation of infinity cuts
	Computational experiments
	Generating infinity cuts from the tableau
	Cut generating procedure
	Results and discussion


	Intersection Cuts for Single-Row Relaxations
	Basic results
	Enumerating the vertices of the knapsacks
	Upper bound on the split rank
	Computational Experiments

	Conclusion
	Bibliography

